NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

IIT-JEE 2010 Paper 1 Offline

MCQ (Single Correct Answer)
The value of $$\int\limits_0^1 {{{{x^4}{{\left( {1 - x} \right)}^4}} \over {1 + {x^2}}}dx} $$ is (are)
A
$${{22} \over 7} - \pi $$
B
$${2 \over {105}}$$
C
$$0$$
D
$${{71} \over {15}} - {{3\pi } \over 2}$$

Explanation

$$\int\limits_0^1 {{{{x^4}{{(1 - x)}^4}} \over {1 + {x^2}}}dx = \int\limits_0^1 {{{{x^4}{{\{ (1 + {x^2}) - 2x\} }^2}} \over {1 + {x^2}}}dx} } $$

$$ = \int\limits_0^1 {{x^4}{{{{(1 + {x^2})}^2} - 4x(1 + {x^2}) + 4{x^2}} \over {1 + {x^2}}}dx} $$

$$ = \int\limits_0^1 {{x^4}\left[ {1 + {x^2} - 4x + {{4\{ 1 + {x^2} - 1\} } \over {1 + {x^2}}}} \right]dx} $$

$$ = \int\limits_0^1 {{x^4}\left[ {1 + {x^2} - 4x + 4 - {4 \over {1 + {x^2}}}} \right]dx} $$

$$ = \int\limits_0^1 {\left[ {{x^6} - 4{x^5} + 5{x^4} - 4{{{x^4} - 1 + 1} \over {1 + {x^2}}}} \right]dx} $$

$$ = \int\limits_0^1 {({x^6} - 4{x^5} + 5{x^4} - 4{x^2} + 4)dx - 4\int\limits_0^1 {{{dx} \over {1 + {x^2}}}} } $$

$$ = \left[ {{{{x^7}} \over 7} - {{2{x^6}} \over 3} + {x^5} - {{4{x^3}} \over 3} + 4x} \right]_0^1 - 4[{\tan ^{ - 1}}x]_0^1$$

$$ = \left[ {{1 \over 7} - {2 \over 3} + 1 - {4 \over 3} + 4} \right] - \pi = {{22} \over 7} - \pi $$

2

IIT-JEE 2010 Paper 1 Offline

MCQ (Single Correct Answer)
The value of $$\mathop {\lim }\limits_{x \to 0} {1 \over {{x^3}}}\int\limits_0^x {{{t\ln \left( {1 + t} \right)} \over {{t^4} + 4}}} dt$$ is
A
$$0$$
B
$${1 \over 12}$$
C
$${1 \over 24}$$
D
$${1 \over 64}$$

Explanation

$$\mathop {\lim }\limits_{x \to 0} {1 \over {{x^3}}}\int_0^x {{{t\log (1 + t)} \over {4 + {t^4}}}dt} $$

Using L' Hospital's rule,

$$ = \mathop {\lim }\limits_{x \to 0} {{{{x\log (1 + x)} \over {4 + {x^4}}}} \over {3{x^2}}}$$

$$ = \mathop {\lim }\limits_{x \to 0} {{\log (1 + x)} \over {3x}}\,.\,{1 \over {4 + {x^4}}}$$

$$ = {1 \over 3}\,.\,{1 \over 4} = {1 \over {12}}$$ [using, $$\mathop {\lim }\limits_{x \to 0} {{\log (1 + x)} \over x} = 1$$]

3

IIT-JEE 2010 Paper 2 Offline

MCQ (Single Correct Answer)
Let $$f$$ be a real-valued function defined on the interval $$(-1, 1)$$ such that
$${e^{ - x}}f\left( x \right) = 2 + \int\limits_0^x {\sqrt {{t^4} + 1} \,\,dt,} $$ for all $$x \in \left( { - 1,1} \right)$$,
and let $${f^{ - 1}}$$ be the inverse function of $$f$$. Then $$\left( {{f^{ - 1}}} \right)'\left( 2 \right)$$ is equal to
A
$$1$$
B
$${{1 \over 3}}$$
C
$${{1 \over 2}}$$
D
$${{1 \over e}}$$

Explanation

We have,

$${e^{ - x}}f(x) = 2 + \int\limits_0^x {\sqrt {{t^4} + 1} \,dt\,x \in ( - 1,1)} $$

On differentiating w.r.t. x, we get

$${e^{ - x}}(f'(x) - f(x)) = \sqrt {{x^4} + 1} $$

$$ \Rightarrow f'(x) = f(x) + \sqrt {{x^4} + 1} \,{e^x}$$

$$\because$$ $${f^{ - 1}}$$ is the inverse of f

$$\therefore$$ $${f^{ - 1}}(f(x)) = x$$

$$ \Rightarrow {f^{ - 1'}}(f(x))f'(x) = 1$$

$$ \Rightarrow {f^{ - 1'}}(f(x)) = {1 \over {f'(x)}}$$

$$ \Rightarrow {f^{ - 1'}}(f(x)) = {1 \over {f(x) + \sqrt {{x^4} + 1} \,{e^x}}}$$

At $$x = 0$$, $$f(x) = 2$$

$${f^{ - 1'}}(2) = {1 \over {2 + 1}} = {1 \over 3}$$

4

IIT-JEE 2009

MCQ (Single Correct Answer)
let $$f$$be a non-negative function defined on the interval
$$\left[ {0,1} \right]$$. If $$\int\limits_0^x {\sqrt {1 - {{\left( {f'\left( t \right)} \right)}^2}} dt = } \int\limits_0^x {f\left( t \right)dt,\,\,\,0 \le x \le 1} ,$$
$$f\left( 0 \right) = 0,$$ then
A
$$f\left( {{1 \over 2}} \right) < {1 \over 2}$$ and $$f\left( {{1 \over 3}} \right) > {1 \over 3}$$
B
$$f\left( {{1 \over 2}} \right) > {1 \over 2}$$ and $$f\left( {{1 \over 3}} \right) > {1 \over 3}$$
C
$$f\left( {{1 \over 2}} \right) < {1 \over 2}$$ and $$f\left( {{1 \over 3}} \right) < {1 \over 3}$$
D
$$f\left( {{1 \over 2}} \right) > {1 \over 2}$$ and $$f\left( {{1 \over 3}} \right) < {1 \over 3}$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12