1
IIT-JEE 1984
Subjective
+4
-0
If $$p$$ be a natural number then prove that $${p^{n + 1}} + {\left( {p + 1} \right)^{2n - 1}}$$ is divisible by $${p^2} + p + 1$$ for every positive integer $$n$$.
2
IIT-JEE 1983
Subjective
+2
-0
Use mathematical Induction to prove : If $$n$$ is any odd positive integer, then $$n\left( {{n^2} - 1} \right)$$ is divisible by 24.
3
IIT-JEE 1983
Subjective
+3
-0
If $${\left( {1 + x} \right)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ..... + {C_n}{x^n}$$ then show that the sum of the products of the $${C_i}s$$ taken two at a time, represented $$\sum\limits_{0 \le i < j \le n} {\sum {{C_i}{C_j}} } $$ is equal to $${2^{2n - 1}} - {{\left( {2n} \right)!} \over {2{{\left( {n!} \right)}^2}}}$$
4
IIT-JEE 1982
Subjective
+5
-0
Prove that $${7^{2n}} + \left( {{2^{3n - 3}}} \right)\left( {3n - 1} \right)$$ is divisible by 25 for any natural number $$n$$.
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12