1
IIT-JEE 2008 Paper 1 Offline
+3
-1
A circle C of radius 1 is inscribed in an equilateral triangle PQR. The points of contact of C with the sides PQ, QR, RP are D, E, F, respectively. The line PQ is given by the equation $$\sqrt 3 x\, + \,y\, - \,6 = 0$$ and the point D is $$\left( {{{3\,\sqrt 3 } \over 2},\,{3 \over 2}} \right)$$. Further, it is given that the origin and the centre of C are on the same side of the line PQ.

Points E and F are given by

A
$$\left( {{{\,\sqrt 3 } \over 2},\,{3 \over 2}} \right),\,\left( {\sqrt 3 ,\,0} \right)$$
B
$$\left( {{{\,\sqrt 3 } \over 2},\,{1 \over 2}} \right),\,\left( {\sqrt 3 ,\,0} \right)$$
C
$$\left( {{{\,\sqrt 3 } \over 2},\,{3 \over 2}} \right),\,\left( {{{\,\sqrt 3 } \over 2},\,{1 \over 2}} \right)$$
D
$$\left( {{{\,3} \over 2},\,{{\sqrt 3 } \over 2}} \right),\,\left( {{{\,\sqrt 3 } \over 2},\,{1 \over 2}} \right)$$
2
IIT-JEE 2008 Paper 1 Offline
+3
-1
A circle C of radius 1 is inscribed in an equilateral triangle PQR. The points of contact of C with the sides PQ, QR, RP are D, E, F, respectively. The line PQ is given by the equation $$\sqrt 3 x\, + \,y\, - \,6 = 0$$ and the point D is $$\left( {{{3\,\sqrt 3 } \over 2},\,{3 \over 2}} \right)$$. Further, it is given that the origin and the centre of C are on the same side of the line PQ.

Equations of the sides QR, RP are

A
$$y = {2 \over {\sqrt 3 }}\,x + \,1,\,\,y = \, - {2 \over {\sqrt 3 }}\,x - 1$$
B
$$y = {1 \over {\sqrt 3 }}\,x,\,\,y = \,0$$
C
$$y = {{\sqrt 3 } \over 2}\,x + \,1,\,\,y = \, - {{\sqrt 3 } \over 2}\,x - 1$$
D
$$y = \sqrt 3 \,x,\,\,y = \,0$$
3
IIT-JEE 2006
+5
-1.25
ABCD is a square of side length 2 units. $$C_1$$ is the circle touching all the sides of the square ABCD and $$C_2$$ is the circumcircle of square ABCD. L is a fixed line in the same plane and R is a fixed point.

If a circle is such that it touches the line L and the circle $$C_1$$ externally, such that both the circles are on the same side of the line, then the locus of centre of the circle is

A
ellipse
B
hyper bola
C
parabola
D
pair of straight line
4
IIT-JEE 2006
+5
-1.25
ABCD is a square of side length 2 units. $$C_1$$ is the circle touching all the sides of the square ABCD and $$C_2$$ is the circumcircle of square ABCD. L is a fixed line in the same plane and R is a fixed point.

A line L' through A is drawn parallel to BD. Point S moves such that its distances from the BD and the vertex A are equal. If locus of S cuts L' at $$T_2$$ and $$T_3$$ and AC at $$T_1$$, then area of $$\Delta \,{T_1}\,{T_2}\,{T_3}$$ is

A
$${1 \over 2}\,sq.\,units$$
B
$${2 \over 3}\,sq.\,units$$
C
1 sq. units
D
2 sq.units
EXAM MAP
Medical
NEET