1
IIT-JEE 1995 Screening
+1
-0.25
The value of $$\int\limits_\pi ^{2\pi } {\left[ {2\,\sin x} \right]\,dx}$$ where [ . ] represents the greatest integer function is
A
$${{ - 5\pi } \over 3}$$
B
$$\pi$$
C
$${{ 5\pi } \over 3}$$
D
$$- 2\pi$$
2
IIT-JEE 1995 Screening
+1
-0.25
If $$f\left( x \right)\,\,\, = \,\,\,A\sin \left( {{{\pi x} \over 2}} \right)\,\,\, + \,\,\,B,\,\,\,f'\left( {{1 \over 2}} \right) = \sqrt 2$$ and
$$\int\limits_0^1 {f\left( x \right)dx = {{2A} \over \pi },}$$ then constants $$A$$ and $$B$$ are
A
$${\pi \over 2}$$ and $${\pi \over 2}$$
B
$${2 \over \pi }$$ and $${3 \over \pi }$$
C
$$0$$ and $${-4 \over \pi }$$
D
$${4 \over \pi }$$ and $$0$$
3
IIT-JEE 1993
+1
-0.25
The value of $$\int\limits_0^{\pi /2} {{{dx} \over {1 + {{\tan }^3}\,x}}}$$ is
A
$$0$$
B
$$1$$
C
$$\pi /2$$
D
$$\pi /4$$
4
IIT-JEE 1990
+2
-0.5
Let $$f:R \to R$$ and $$\,\,g:R \to R$$ be continuous functions. Then the value of the integral
$$\int\limits_{ - \pi /2}^{\pi /2} {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]\left[ {g\left( x \right) - g\left( { - x} \right)} \right]dx}$$ is
A
$$\pi$$
B
$$1$$
C
$$-1$$
D
$$0$$
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination