1
IIT-JEE 1995 Screening
MCQ (Single Correct Answer)
+1
-0.25
The value of $$\int\limits_\pi ^{2\pi } {\left[ {2\,\sin x} \right]\,dx} $$ where [ . ] represents the greatest integer function is
A
$${{ - 5\pi } \over 3}$$
B
$$\pi $$
C
$${{ 5\pi } \over 3}$$
D
$$ - 2\pi $$
2
IIT-JEE 1995 Screening
MCQ (Single Correct Answer)
+1
-0.25
If $$f\left( x \right)\,\,\, = \,\,\,A\sin \left( {{{\pi x} \over 2}} \right)\,\,\, + \,\,\,B,\,\,\,f'\left( {{1 \over 2}} \right) = \sqrt 2 $$ and
$$\int\limits_0^1 {f\left( x \right)dx = {{2A} \over \pi },} $$ then constants $$A$$ and $$B$$ are
A
$${\pi \over 2}$$ and $${\pi \over 2}$$
B
$${2 \over \pi }$$ and $${3 \over \pi }$$
C
$$0$$ and $${-4 \over \pi }$$
D
$${4 \over \pi }$$ and $$0$$
3
IIT-JEE 1993
MCQ (Single Correct Answer)
+1
-0.25
The value of $$\int\limits_0^{\pi /2} {{{dx} \over {1 + {{\tan }^3}\,x}}} $$ is
A
$$0$$
B
$$1$$
C
$$\pi /2$$
D
$$\pi /4$$
4
IIT-JEE 1990
MCQ (Single Correct Answer)
+2
-0.5
Let $$f:R \to R$$ and $$\,\,g:R \to R$$ be continuous functions. Then the value of the integral
$$\int\limits_{ - \pi /2}^{\pi /2} {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]\left[ {g\left( x \right) - g\left( { - x} \right)} \right]dx} $$ is
A
$$\pi $$
B
$$1$$
C
$$-1$$
D
$$0$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12