NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

### IIT-JEE 1995 Screening

The value of $$\int\limits_\pi ^{2\pi } {\left[ {2\,\sin x} \right]\,dx}$$ where [ . ] represents the greatest integer function is
A
$${{ - 5\pi } \over 3}$$
B
$$\pi$$
C
$${{ 5\pi } \over 3}$$
D
$$- 2\pi$$
2

### IIT-JEE 1993

The value of $$\int\limits_0^{\pi /2} {{{dx} \over {1 + {{\tan }^3}\,x}}}$$ is
A
$$0$$
B
$$1$$
C
$$\pi /2$$
D
$$\pi /4$$
3

### IIT-JEE 1990

Let $$f:R \to R$$ and $$\,\,g:R \to R$$ be continuous functions. Then the value of the integral
$$\int\limits_{ - \pi /2}^{\pi /2} {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]\left[ {g\left( x \right) - g\left( { - x} \right)} \right]dx}$$ is
A
$$\pi$$
B
$$1$$
C
$$-1$$
D
$$0$$
4

### IIT-JEE 1985

For any integer $$n$$ the integral ...........
$$\int\limits_0^\pi {{e^{{{\cos }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx}$$ has the value
A
$$\pi$$
B
$$1$$
C
$$0$$
D
none of these

### Joint Entrance Examination

JEE Main JEE Advanced WB JEE

### Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

NEET

Class 12