1
IIT-JEE 2001 Screening
+2
-0.5
The complex numbers $${z_1},\,{z_2}$$ and $${z_3}$$ satisfying $${{{z_1} - {z_3}} \over {{z_2} - {z_3}}} = {{1 - i\sqrt 3 } \over 2}\,$$ are the vertices of a triangle which is
A
of area zero
B
right-angled isosceles
C
equilateral
D
obtuse-angled isosceles
2
IIT-JEE 2000 Screening
+2
-0.5
If $$\arg \left( z \right) < 0,$$ then $$\arg \left( { - z} \right) - \arg \left( z \right) =$$
A
$$\pi$$
B
$$- \pi$$
C
$$- {\pi \over 2}$$
D
$${\pi \over 2}$$
3
IIT-JEE 2000 Screening
+2
-0.5
If $${z_1},\,{z_2}$$ and $${z_3}$$ are complex numbers such that $$\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = \left| {{1 \over {{z_1}}} + {1 \over {{z_2}}} + {1 \over {{z_3}}}} \right| = 1,$$ then $$\left| {{z_1} + {z_2} + {z_3}} \right|$$ is
A
equal to 1
B
less than 1
C
greater than 3
D
equal to 3
4
IIT-JEE 1999
+2
-0.5
$$If\,i = \sqrt { - 1} ,\,\,then\,\,4 + 5{\left( { - {1 \over 2} + {{i\sqrt 3 } \over 2}} \right)^{334}} + 3{\left( { - {1 \over 2} + {{i\sqrt 3 } \over 2}} \right)^{365}}$$ is equal to
A
$$1 - i\sqrt 3$$
B
$$- 1 + i\sqrt 3$$
C
$$i\sqrt 3$$
D
$$- i\sqrt 3$$
EXAM MAP
Medical
NEET