1
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+2
-0.5
$$a,\,b,\,c$$ are integers, not all simultaneously equal and $$\omega $$ is cube root of unity $$\left( {\omega \ne 1} \right),$$ then minimum value of $$\left| {a + b\omega + c{\omega ^2}} \right|$$ is
A
0
B
1
C
$${{\sqrt 3 } \over 2}$$
D
$${1 \over 2}$$
2
IIT-JEE 2004 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $$\omega $$ $$\left( { \ne 1} \right)$$ be a cube root of unity and $${\left( {1 + {\omega ^2}} \right)^n} = {\left( {1 + {\omega ^4}} \right)^n},$$ then the least positive value of n is
A
2
B
3
C
5
D
6
3
IIT-JEE 2003 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $$\,\left| z \right| = 1$$ and $$\omega = {{z - 1} \over {z + 1}}$$ (where $$z \ne - 1$$), then $${\mathop{\rm Re}\nolimits} \left( \omega \right)$$ is
A
0
B
$$ - {1 \over {{{\left| {z + 1} \right|}^2}}}$$
C
$$\left| {{z \over {z + 1}}} \right|.{1 \over {{{\left| {z + 1} \right|}^2}}}$$
D
$$\,{{\sqrt 2 } \over {{{\left| {z + 1} \right|}^2}}}$$
4
IIT-JEE 2002 Screening
MCQ (Single Correct Answer)
+2
-0.5
For all complex numbers $${z_1},\,{z_2}$$ satisfying $$\left| {{z_1}} \right| = 12$$ and $$\left| {{z_2} - 3 - 4i} \right| = 5,$$
the minimum value of $$\left| {{z_1} - {z_2}} \right|$$ is
A
0
B
2
C
7
D
17
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12