NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Advanced 2021 Paper 1 Online

MCQ (Single Correct Answer)
Let $$\theta$$1, $$\theta$$2, ........, $$\theta$$10 = 2$$\pi$$. Define the complex numbers z1 = ei$$\theta$$1, zk = zk $$-$$ 1ei$$\theta$$k for k = 2, 3, ......., 10, where i = $$\sqrt { - 1} $$. Consider the statements P and Q given below :

$$P:\left| {{z_2} - {z_1}} \right| + \left| {{z_3} - {z_2}} \right| + ..... + \left| {{z_{10}} - {z_9}} \right| + \left| {{z_1} - {z_{10}}} \right| \le 2\pi $$

$$Q:\left| {z_2^2 - z_1^2} \right| + \left| {z_3^2 - z_2^2} \right| + .... + \left| {z_{10}^2 - z_9^2} \right| + \left| {z_1^2 - z_{10}^2} \right| \le 4\pi $$

Then,
A
P is TRUE and Q is FALSE
B
Q is TRUE and P is FALSE
C
both P and Q are TRUE
D
both P and Q are FALSE

Explanation

Both P and Q are true.

$$\because$$ Length of direct ditance $$\le$$ length of arc

i.e. | z2 $$-$$ z1 | = length of line AB $$\le$$ length of arc AB.


| z3 $$-$$ z2 | = length of line BC $$\le$$ length of arc BC.

$$\therefore$$ Sum of length of these 10 lines $$\le$$ sum of length of arcs (i.e. 2$$\pi$$) (because $$\theta$$1 + $$\theta$$2 + $$\theta$$3 + .... + $$\theta$$10 = 2$$\pi$$ given)

$$\therefore$$ | z2 $$-$$ z1 | + | z3 $$-$$ z2 | + ..... + | z1 $$-$$ z10 | $$\le$$ 2$$\pi$$ $$\to$$ P is true.

And | z$$_k^2$$ $$-$$ z$$_{k - 1}^2$$ | = | zk $$-$$ zk $$-$$ 1 | | zk + zk $$-$$ 1 |

As we know that,

| zk + zk $$-$$ 1 | $$\le$$ | zk | + | zk $$-$$ 1 | $$\le$$ 2

$$\therefore$$ | z$$_2^2$$ $$-$$ z$$_1^2$$ | + | z$$_3^2$$ $$-$$ z$$_2^2$$ | + .... + | z$$_1^2$$ $$-$$ z$$_{10}^2$$ | $$\le$$ 2 ( | z2 $$-$$ z1 | + | z3 $$-$$ z2 | + .... + | z1 $$-$$ z10 | )

$$\le$$ 2(2$$\pi$$)

$$\le$$ 4$$\pi$$ $$\to$$ Q is true.
2

JEE Advanced 2019 Paper 1 Offline

MCQ (Single Correct Answer)
Let S be the set of all complex numbers z satisfying $$\left| {z - 2 + i} \right| \ge \sqrt 5 $$. If the complex number z0 is such that $${1 \over {\left| {{z_0} - 1} \right|}}$$ is the maximum of the set $$\left\{ {{1 \over {\left| {{z_0} - 1} \right|}}:z \in S} \right\}$$, then the principal argument of $${{4 - {z_0} - {{\overline z }_0}} \over {{z_0} - {{\overline z }_0} + 2i}}$$ is
A
$${\pi \over 4}$$
B
$${3\pi \over 4}$$
C
$$ - $$$${\pi \over 2}$$
D
$${\pi \over 2}$$

Explanation

The complex number z satisfying $$\left| {z - 2 + i} \right| \ge \sqrt 5 $$, which represents the region outside the circle (including the circumference) having centre (2, $${ - 1}$$) and radius $$\sqrt 5 $$ units.



Now, for $${{z_0} \in S{1 \over {\left| {{z_0} - 1} \right|}}}$$ is maximum.

When $${\left| {{z_0} - 1} \right|}$$ is minimum. And for this it is required that $${{z_0} \in S}$$, such that z0 is collinear with the points (2, $$ - $$1) and (1, 0) and lies on the circumference of the circle $$\left| {z - 2 + i} \right|$$ = $$\sqrt 5 $$.

So let z0 = x + iy, and from the figure 0 < x < 1 and y >0.

So, $${{4 - {z_0} - {{\overline z }_0}} \over {{z_0} - {{\overline z }_0} + 2i}} = {{4 - x - iy - x + iy} \over {x + iy - x + iy + 2i}} = {{2(2 - x)} \over {2i(y + 1)}} = - i\left( {{{2 - x} \over {y + 1}}} \right)$$

$$ \because $$ $${{{2 - x} \over {y + 1}}}$$ is a positive real number, so $${{4 - {z_0} - {{\overline z }_0}} \over {{z_0} - {{\overline z }_0} + 2i}}$$ is purely negative imaginary number.

$$ \Rightarrow $$ $$\arg \left( {{{4 - {z_0} - {{\overline z }_0}} \over {{z_0} - {{\overline z }_0} + 2i}}} \right) = - {\pi \over 2}$$
3

JEE Advanced 2014 Paper 2 Offline

MCQ (Single Correct Answer)
Let $${z_k}$$ = $$\cos \left( {{{2k\pi } \over {10}}} \right) + i\,\,\sin \left( {{{2k\pi } \over {10}}} \right);\,k = 1,2....,9$$

List-I


P. For each $${z_k}$$ = there exits as $${z_j}$$ such that $${z_k}$$.$${z_j}$$ = 1
Q. There exists a $$k \in \left\{ {1,2,....,9} \right\}$$ such that $${z_1}.z = {z_k}$$ has no solution z in the set of complex numbers
R. $${{\left| {1 - {z_1}} \right|\,\left| {1 - {z_2}} \right|\,....\left| {1 - {z_9}} \right|} \over {10}}$$ equals
S. $$1 - \sum\limits_{k = 1}^9 {\cos \left( {{{2k\pi } \over {10}}} \right)} $$ equals

List-II


1. True
2. False
3. 1
4. 2
A
P = 1, Q = 2, R = 4, S = 3
B
P = 2, Q = 1, R = 3, S = 4
C
P = 1, Q = 2, R = 3, S = 4
D
P =2, Q = 1, R = 4, S = 3
4

JEE Advanced 2013 Paper 2 Offline

MCQ (Single Correct Answer)
Let $$S = {S_1} \cap {S_2} \cap {S_3}$$, where $${S_1} = \left\{ {z \in C:\left| z \right| < 4} \right\},{S_2} = \left\{ {z \in C:{\mathop{\rm Im}\nolimits} \left[ {{{z - 1 + \sqrt 3 i} \over {1 - \sqrt 3 i}}} \right] > 0} \right\}$$ and $${S_3} = \left\{ {z \in C:{\mathop{\rm Re}\nolimits} z > 0} \right\}\,$$.

$$\,\mathop {\min }\limits_{z \in S} \left| {1 - 3i - z} \right| = $$

A
$${{2 - \sqrt 3 } \over 2}$$
B
$${{2 + \sqrt 3 } \over 2}$$
C
$${{3 - \sqrt 3 } \over 2}$$
D
$${{3 + \sqrt 3 } \over 2}$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12