1
IIT-JEE 2010 Paper 2 Offline
+4
-1
Match the statements in Column I with those in Column II.

[Note : Here z takes value in the complex plane and Im z and Re z denotes, respectively, the imaginary part and the real part of z.]

Column I

(A) The set of points z satisfying $$\left| {z - i} \right|\left. {z\,} \right\|\,\, = \left| {z + i} \right|\left. {\,z} \right\|$$ is contained in or equal to
(B) The set of points z satisfying $$\left| {z + 4} \right| + \,\left| {z - 4} \right| = 10$$ is contained in or equal to
(C) If $$\left| w \right|$$= 2, then the set of points $$z = w - {1 \over w}$$ is contained in or equal to
(D) If $$\left| w \right|$$ = 1, then the set of points $$z = w + {1 \over w}$$ is contained in or equal to.

Column II

(p) an ellipse with eccentricity $${4 \over 5}$$
(q) the set of points z satisfying Im z = 0
(r) the set of points z satisfying $$\left| {{\rm{Im }}\,{\rm{z }}} \right| \le 1$$
(s) the set of points z satisfying $$\,\left| {{\mathop{\rm Re}\nolimits} \,\,z} \right| < 2$$
(t) the set of points z satisfying $$\left| {\,z} \right| \le 3$$
A
(A) - q, s ; (B) - p ; (C) - p, t ; (D) - q, r, s, t
B
(A) - q, r ; (B) - p ; (C) - p, s, t ; (D) - q, r, s, t
C
(A) - p, r ; (B) - p ; (C) - p, t ; (D) -q, r, s, t
D
(A) - p ; (B) - q ; (C) - r, s ; (D) -q, r, s, t
2
IIT-JEE 2009 Paper 1 Offline
+3
-1
Let $$z = \,\cos \,\theta \, + i\,\sin \,\theta$$ . Then the value of $$\sum\limits_{m = 1}^{15} {{\mathop{\rm Im}\nolimits} } ({z^{2m - 1}})\,at\,\theta \, = {2^ \circ }$$ is
A
$${1 \over {\sin \,{2^ \circ }}}$$
B
$${1 \over {3\sin \,{2^ \circ }}}$$
C
$${1 \over {2\sin \,{2^ \circ }}}$$
D
$${1 \over {4\sin \,{2^ \circ }}}$$
3
IIT-JEE 2009 Paper 1 Offline
+3
-1

Let $$z = x + iy$$ be a complex number where x and y are integers. Then the area of the rectangle whose vertices are the roots of the equation $$\overline z {z^3} + z{\overline z ^3} = 350$$ is

A
48
B
32
C
40
D
80
4
IIT-JEE 2008 Paper 2 Offline
+3
-1
A particle P stats from the point $${z_0}$$ = 1 +2i, where $$i = \sqrt { - 1}$$. It moves horizontally away from origin by 5 unit and then vertically away from origin by 3 units to reach a point $${z_1}$$. From $${z_1}$$ the particle moves $$\sqrt 2$$ units in the direction of the vector $$\hat i + \hat j$$ and then it moves through an angle $${\pi \over 2}$$ in anticlockwise direction on a circle with centre at origin, to reach a point $${z_2}$$. The point $${z_2}$$ is given by
A
6 + 7i
B
-7 + 6i
C
7 + 6i
D
- 6 + 7i
EXAM MAP
Medical
NEET