1
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $$\arg \left( z \right) < 0,$$ then $$\arg \left( { - z} \right) - \arg \left( z \right) = $$
A
$$\pi $$
B
$$ - \pi $$
C
$$ - {\pi \over 2}$$
D
$${\pi \over 2}$$
2
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $${z_1},\,{z_2}$$ and $${z_3}$$ are complex numbers such that $$\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = \left| {{1 \over {{z_1}}} + {1 \over {{z_2}}} + {1 \over {{z_3}}}} \right| = 1,$$ then $$\left| {{z_1} + {z_2} + {z_3}} \right|$$ is
A
equal to 1
B
less than 1
C
greater than 3
D
equal to 3
3
IIT-JEE 1999
MCQ (Single Correct Answer)
+2
-0.5
$$If\,i = \sqrt { - 1} ,\,\,then\,\,4 + 5{\left( { - {1 \over 2} + {{i\sqrt 3 } \over 2}} \right)^{334}} + 3{\left( { - {1 \over 2} + {{i\sqrt 3 } \over 2}} \right)^{365}}$$ is equal to
A
$$1 - i\sqrt 3 $$
B
$$ - 1 + i\sqrt 3 $$
C
$$i\sqrt 3 $$
D
$$ - i\sqrt 3 $$
4
IIT-JEE 1996
MCQ (Single Correct Answer)
+1
-0.25
For positive integers $${n_1},\,{n_2}$$ the value of the expression $${\left( {1 + i} \right)^{^{{n_1}}}} + {\left( {1 + {i^3}} \right)^{{n_1}}} + {\left( {1 + {i^5}} \right)^{{n_2}}} + {\left( {1 + {i^7}} \right)^{{n_2}}},$$
where $$i = \sqrt { - 1} $$ is real number if and only if
A
$${n_1} = {n_2} + 1$$
B
$${n_1} = {n_2} - 1$$
C
$${n_1} = {n_2}$$
D
$${n_1} > 0,\,{n_2} > 0$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12