For positive integers $${n_1},\,{n_2}$$ the value of the expression $${\left( {1 + i} \right)^{^{{n_1}}}} + {\left( {1 + {i^3}} \right)^{{n_1}}} + {\left( {1 + {i^5}} \right)^{{n_2}}} + {\left( {1 + {i^7}} \right)^{{n_2}}},$$
where $$i = \sqrt { - 1} $$ is real number if and only if
A
$${n_1} = {n_2} + 1$$
B
$${n_1} = {n_2} - 1$$
C
$${n_1} = {n_2}$$
D
$${n_1} > 0,\,{n_2} > 0$$
Questions Asked from Complex Numbers
On those following papers in MCQ (Single Correct Answer)
Number in Brackets after Paper Indicates No. of Questions