1
JEE Advanced 2019 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
Let S be the set of all complex numbers z satisfying $$\left| {z - 2 + i} \right| \ge \sqrt 5 $$. If the complex number z0 is such that $${1 \over {\left| {{z_0} - 1} \right|}}$$ is the maximum of the set $$\left\{ {{1 \over {\left| {{z_0} - 1} \right|}}:z \in S} \right\}$$, then the principal argument of $${{4 - {z_0} - {{\overline z }_0}} \over {{z_0} - {{\overline z }_0} + 2i}}$$ is
A
$${\pi \over 4}$$
B
$${3\pi \over 4}$$
C
$$ - $$$${\pi \over 2}$$
D
$${\pi \over 2}$$
2
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let $${z_k}$$ = $$\cos \left( {{{2k\pi } \over {10}}} \right) + i\,\,\sin \left( {{{2k\pi } \over {10}}} \right);\,k = 1,2....,9$$

List-I


P. For each $${z_k}$$ = there exits as $${z_j}$$ such that $${z_k}$$.$${z_j}$$ = 1
Q. There exists a $$k \in \left\{ {1,2,....,9} \right\}$$ such that $${z_1}.z = {z_k}$$ has no solution z in the set of complex numbers
R. $${{\left| {1 - {z_1}} \right|\,\left| {1 - {z_2}} \right|\,....\left| {1 - {z_9}} \right|} \over {10}}$$ equals
S. $$1 - \sum\limits_{k = 1}^9 {\cos \left( {{{2k\pi } \over {10}}} \right)} $$ equals

List-II


1. True
2. False
3. 1
4. 2
A
P = 1, Q = 2, R = 4, S = 3
B
P = 2, Q = 1, R = 3, S = 4
C
P = 1, Q = 2, R = 3, S = 4
D
P =2, Q = 1, R = 4, S = 3
3
JEE Advanced 2013 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$S = {S_1} \cap {S_2} \cap {S_3}$$, where $${S_1} = \left\{ {z \in C:\left| z \right| < 4} \right\},{S_2} = \left\{ {z \in C:{\mathop{\rm Im}\nolimits} \left[ {{{z - 1 + \sqrt 3 i} \over {1 - \sqrt 3 i}}} \right] > 0} \right\}$$ and $${S_3} = \left\{ {z \in C:{\mathop{\rm Re}\nolimits} z > 0} \right\}\,$$.

Area of S =

A
$${{10\pi } \over 3}$$
B
$${{20\pi } \over 3}$$
C
$${{16\pi } \over 3}$$
D
$${{32\pi } \over 3}$$
4
JEE Advanced 2013 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$S = {S_1} \cap {S_2} \cap {S_3}$$, where $${S_1} = \left\{ {z \in C:\left| z \right| < 4} \right\},{S_2} = \left\{ {z \in C:{\mathop{\rm Im}\nolimits} \left[ {{{z - 1 + \sqrt 3 i} \over {1 - \sqrt 3 i}}} \right] > 0} \right\}$$ and $${S_3} = \left\{ {z \in C:{\mathop{\rm Re}\nolimits} z > 0} \right\}\,$$.

$$\,\mathop {\min }\limits_{z \in S} \left| {1 - 3i - z} \right| = $$

A
$${{2 - \sqrt 3 } \over 2}$$
B
$${{2 + \sqrt 3 } \over 2}$$
C
$${{3 - \sqrt 3 } \over 2}$$
D
$${{3 + \sqrt 3 } \over 2}$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12