1
IIT-JEE 2012 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
Let z be a complex number such that the imaginary part of z is non-zero and $$a\, = \,{z^2} + \,z\, + 1$$ is real. Then a cannot take the value
A
- 1
B
$${1 \over 3}$$
C
$${1 \over 2}$$
D
$${3 \over 4}$$
2
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Match the statements in Column I with those in Column II.

[Note : Here z takes value in the complex plane and Im z and Re z denotes, respectively, the imaginary part and the real part of z.]

Column I


(A) The set of points z satisfying $$\left| {z - i} \right|\left. {z\,} \right\|\,\, = \left| {z + i} \right|\left. {\,z} \right\|$$ is contained in or equal to
(B) The set of points z satisfying $$\left| {z + 4} \right| + \,\left| {z - 4} \right| = 10$$ is contained in or equal to
(C) If $$\left| w \right|$$= 2, then the set of points $$z = w - {1 \over w}$$ is contained in or equal to
(D) If $$\left| w \right|$$ = 1, then the set of points $$z = w + {1 \over w}$$ is contained in or equal to.

Column II


(p) an ellipse with eccentricity $${4 \over 5}$$
(q) the set of points z satisfying Im z = 0
(r) the set of points z satisfying $$\left| {{\rm{Im }}\,{\rm{z }}} \right| \le 1$$
(s) the set of points z satisfying $$\,\left| {{\mathop{\rm Re}\nolimits} \,\,z} \right| < 2$$
(t) the set of points z satisfying $$\left| {\,z} \right| \le 3$$
A
(A) - q, s ; (B) - p ; (C) - p, t ; (D) - q, r, s, t
B
(A) - q, r ; (B) - p ; (C) - p, s, t ; (D) - q, r, s, t
C
(A) - p, r ; (B) - p ; (C) - p, t ; (D) -q, r, s, t
D
(A) - p ; (B) - q ; (C) - r, s ; (D) -q, r, s, t
3
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let $$z = x + iy$$ be a complex number where x and y are integers. Then the area of the rectangle whose vertices are the roots of the equation $$\overline z {z^3} + z{\overline z ^3} = 350$$ is

A
48
B
32
C
40
D
80
4
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$z = \,\cos \,\theta \, + i\,\sin \,\theta $$ . Then the value of $$\sum\limits_{m = 1}^{15} {{\mathop{\rm Im}\nolimits} } ({z^{2m - 1}})\,at\,\theta \, = {2^ \circ }$$ is
A
$${1 \over {\sin \,{2^ \circ }}}$$
B
$${1 \over {3\sin \,{2^ \circ }}}$$
C
$${1 \over {2\sin \,{2^ \circ }}}$$
D
$${1 \over {4\sin \,{2^ \circ }}}$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12