1

IIT-JEE 2004 Screening

MCQ (Single Correct Answer)
If $$\omega $$ $$\left( { \ne 1} \right)$$ be a cube root of unity and $${\left( {1 + {\omega ^2}} \right)^n} = {\left( {1 + {\omega ^4}} \right)^n},$$ then the least positive value of n is
A
2
B
3
C
5
D
6
2

IIT-JEE 2003 Screening

MCQ (Single Correct Answer)
If $$\,\left| z \right| = 1$$ and $$\omega = {{z - 1} \over {z + 1}}$$ (where $$z \ne - 1$$), then $${\mathop{\rm Re}\nolimits} \left( \omega \right)$$ is
A
0
B
$$ - {1 \over {{{\left| {z + 1} \right|}^2}}}$$
C
$$\left| {{z \over {z + 1}}} \right|.{1 \over {{{\left| {z + 1} \right|}^2}}}$$
D
$$\,{{\sqrt 2 } \over {{{\left| {z + 1} \right|}^2}}}$$
3

IIT-JEE 2002

MCQ (Single Correct Answer)
Let $$\omega $$ $$ = - {1 \over 2} + i{{\sqrt 3 } \over 2},$$ then the value of the det.
$$\,\left| {\matrix{ 1 & 1 & 1 \cr 1 & { - 1 - {\omega ^2}} & {{\omega ^2}} \cr 1 & {{\omega ^2}} & {{\omega ^4}} \cr } } \right|$$ is
A
$$3\omega $$
B
$$3\omega \left( {\omega - 1} \right)$$
C
$$3{\omega ^2}$$
D
$$3\omega \left( {1 - \omega } \right)$$
4

IIT-JEE 2002 Screening

MCQ (Single Correct Answer)
For all complex numbers $${z_1},\,{z_2}$$ satisfying $$\left| {{z_1}} \right| = 12$$ and $$\left| {{z_2} - 3 - 4i} \right| = 5,$$
the minimum value of $$\left| {{z_1} - {z_2}} \right|$$ is
A
0
B
2
C
7
D
17

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12