1
IIT-JEE 2009 Paper 1 Offline
+3
-0

Match the statements/expressions in Column I with the open intervals in Column II :

Column I Column II
(A) Interval contained in the domain of definition of non-zero solutions of the differential equation $${(x - 3)^2}y' + y = 0$$ (P) $$\left( { - {\pi \over 2},{\pi \over 2}} \right)$$
(B) Interval containing the value of the integral $$\int\limits_1^5 {(x - 1)(x - 2)(x - 3)(x - 4)(x - 5)dx}$$ (Q) $$\left( {0,{\pi \over 2}} \right)$$
(C) Interval in which at least one of the points of local maximum of $${\cos ^2}x + \sin x$$ lies (R) $$\left( {{\pi \over 8},{{5\pi } \over 4}} \right)$$
(D) Interval in which $${\tan ^{ - 1}}(\sin x + \cos x)$$ is increasing (S) $$\left( {0,{\pi \over 8}} \right)$$
(T) $$( - \pi ,\pi )$$

A
(A)$$\to$$(P), (Q), (S); (B)$$\to$$(P), (T), (S); (C)$$\to$$(P), (Q), (R), (T); (D)$$\to$$(S)
B
(A)$$\to$$(P), (Q), (S); (B)$$\to$$(P), (T), (R); (C)$$\to$$(P), (Q), (R), (T); (D)$$\to$$(R)
C
(A)$$\to$$(P), (Q), (S); (B)$$\to$$(P), (T), (S); (C)$$\to$$(S), (Q), (R), (T); (D)$$\to$$(S)
D
(A)$$\to$$(P), (T), (S); (B)$$\to$$(P), (T), (S); (C)$$\to$$(P), (Q), (R), (T); (D)$$\to$$(S)
2
IIT-JEE 2008 Paper 2 Offline
+3
-1
Let a solution $$y=y(x)$$ of the differential equation,

$$x\sqrt {{x^2} - 1} \,\,dy - y\sqrt {{y^2} - 1} \,dx = 0$$ satify $$y\left( 2 \right) = {2 \over {\sqrt 3 }}.$$

STATEMENT-1 : $$y\left( x \right) = \sec \left( {{{\sec }^{ - 1}}x - {\pi \over 6}} \right)$$ and

STATEMENT-2 : $$y\left( x \right)$$ given by $${1 \over y} = {{2\sqrt 3 } \over x} - \sqrt {1 - {1 \over {{x^2}}}}$$

A
STATEMENT-1 is True, STATEMENT-2 is True;STATEMENT-2 is a correct explanation for STATEMENT-1
B
STATEMENT-1 is True, STATEMENT-2 is True;STATEMENT-2 is NOT a correct explanation for STATEMENT-1
C
STATEMENT-1 is True, STATEMENT-2 is False
D
STATEMENT-1 is False , STATEMENT-2 is True
3
IIT-JEE 2005 Screening
+2
-0.5
For the primitive integral equation $$ydx + {y^2}dy = x\,dy;$$
$$x \in R,\,\,y > 0,y = y\left( x \right),\,y\left( 1 \right) = 1,$$ then $$y(-3)$$ is
A
$$3$$
B
$$2$$
C
$$1$$
D
$$5$$
4
IIT-JEE 2005 Screening
+2
-0.5
The solution of primitive integral equation $$\left( {{x^2} + {y^2}} \right)dy = xy$$
$$dx$$ is $$y=y(x),$$ If $$y(1)=1$$ and $$\left( {{x_0}} \right) = e$$, then $${{x_0}}$$ is equal to
A
$$\sqrt {2\left( {{e^2} - 1} \right)}$$
B
$$\sqrt {2\left( {{e^2} + 1} \right)}$$
C
$$\sqrt 3 \,e$$
D
$$\sqrt {{{2\left( {{e^2} + 1} \right)} \over 2}}$$
EXAM MAP
Medical
NEET