1
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+2
-0.5
For the primitive integral equation $$ydx + {y^2}dy = x\,dy;$$
$$x \in R,\,\,y > 0,y = y\left( x \right),\,y\left( 1 \right) = 1,$$ then $$y(-3)$$ is
A
$$3$$
B
$$2$$
C
$$1$$
D
$$5$$
2
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $$y=y(x)$$ and it follows the relation $$x\cos \,y + y\,cos\,x = \pi $$ then $$y''(0)=$$
A
$$1$$
B
$$-1$$
C
$${\pi}$$
D
$$ - \pi $$
3
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+2
-0.5
The solution of primitive integral equation $$\left( {{x^2} + {y^2}} \right)dy = xy$$
$$dx$$ is $$y=y(x),$$ If $$y(1)=1$$ and $$\left( {{x_0}} \right) = e$$, then $${{x_0}}$$ is equal to
A
$$\sqrt {2\left( {{e^2} - 1} \right)} $$
B
$$\sqrt {2\left( {{e^2} + 1} \right)} $$
C
$$\sqrt 3 \,e$$
D
$$\sqrt {{{2\left( {{e^2} + 1} \right)} \over 2}} $$
4
IIT-JEE 2004 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $$y=y(x)$$ and $${{2 + \sin x} \over {y + 1}}\left( {{{dy} \over {dx}}} \right) = - \cos x,y\left( 0 \right) = 1,$$
then $$y\left( {{\pi \over 2}} \right)$$ equals
A
$$1/3$$
B
$$2/3$$
C
$$-1/3$$
D
$$1$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12