NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Advanced 2014 Paper 2 Offline

MCQ (Single Correct Answer)
The function $$y=f(x)$$ is the solution of the differential equation
$${{dy} \over {dx}} + {{xy} \over {{x^2} - 1}} = {{{x^4} + 2x} \over {\sqrt {1 - {x^2}} }}\,$$ in $$(-1,1)$$ satisfying $$f(0)=0$$.
Then $$\int\limits_{ - {{\sqrt 3 } \over 2}}^{{{\sqrt 3 } \over 2}} {f\left( x \right)} \,d\left( x \right)$$ is
A
$${\pi \over 3} - {{\sqrt 3 } \over 2}$$
B
$${\pi \over 3} - {{\sqrt 3 } \over 4}$$
C
$${\pi \over 6} - {{\sqrt 3 } \over 4}$$
D
$${\pi \over 6} - {{\sqrt 3 } \over 2}$$
2

JEE Advanced 2013 Paper 1 Offline

MCQ (Single Correct Answer)
A curve passes through the point $$\left( {1,{\pi \over 6}} \right)$$. Let the slope of
the curve at each point $$(x,y)$$ be $${y \over x} + \sec \left( {{y \over x}} \right),x > 0.$$
Then the equation of the curve is
A
$$sin\left( {{y \over x}} \right) = \log x + {1 \over 2}$$
B
$$cos\,ec\left( {{y \over x}} \right) = \log x + 2$$
C
$$\,s\,ec\left( {{{2y} \over x}} \right) = \log x + 2\,$$
D
$$\,cos\left( {{{2y} \over x}} \right) = \log x + {1 \over 2}$$
3

IIT-JEE 2008

MCQ (Single Correct Answer)
Let a solution $$y=y(x)$$ of the differential equation $$x\sqrt {{x^2} - 1} \,\,dy - y\sqrt {{y^2} - 1} \,dx = 0$$ satify $$y\left( 2 \right) = {2 \over {\sqrt 3 }}.$$

STATEMENT-1 : $$y\left( x \right) = \sec \left( {{{\sec }^{ - 1}}x - {\pi \over 6}} \right)$$ and
STATEMENT-2 : $$y\left( x \right)$$ given by $${1 \over y} = {{2\sqrt 3 } \over x} - \sqrt {1 - {1 \over {{x^2}}}} $$

A
STATEMENT-1 is True, STATEMENT-2 is True;STATEMENT-2 is a correct explanation for STATEMENT-1
B
STATEMENT-1 is True, STATEMENT-2 is True;STATEMENT-2 is NOT a correct explanation for STATEMENT-1
C
STATEMENT-1 is True, STATEMENT-2 is False
D
STATEMENT-1 is False , STATEMENT-2 is True
4

IIT-JEE 2005 Screening

MCQ (Single Correct Answer)
The differential equation $${{dy} \over {dx}} = {{\sqrt {1 - {y^2}} } \over y}$$ determines a family of circles with
A
variable radii and a fixed centre at $$(0,1)$$
B
variable radii and a fixed centre at $$(0,-1)$$
C
fixed radius $$1$$ and variable centres along the $$x$$-axis.
D
fixed radius $$1$$ and variable centrs along the $$y$$-axis.

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12