NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

IIT-JEE 2005 Screening

MCQ (Single Correct Answer)
The differential equation $${{dy} \over {dx}} = {{\sqrt {1 - {y^2}} } \over y}$$ determines a family of circles with
A
variable radii and a fixed centre at $$(0,1)$$
B
variable radii and a fixed centre at $$(0,-1)$$
C
fixed radius $$1$$ and variable centres along the $$x$$-axis.
D
fixed radius $$1$$ and variable centrs along the $$y$$-axis.
2

IIT-JEE 2005 Screening

MCQ (Single Correct Answer)
The solution of primitive integral equation $$\left( {{x^2} + {y^2}} \right)dy = xy$$
$$dx$$ is $$y=y(x),$$ If $$y(1)=1$$ and $$\left( {{x_0}} \right) = e$$, then $${{x_0}}$$ is equal to
A
$$\sqrt {2\left( {{e^2} - 1} \right)} $$
B
$$\sqrt {2\left( {{e^2} + 1} \right)} $$
C
$$\sqrt 3 \,e$$
D
$$\sqrt {{{2\left( {{e^2} + 1} \right)} \over 2}} $$
3

IIT-JEE 2005 Screening

MCQ (Single Correct Answer)
For the primitive integral equation $$ydx + {y^2}dy = x\,dy;$$
$$x \in R,\,\,y > 0,y = y\left( x \right),\,y\left( 1 \right) = 1,$$ then $$y(-3)$$ is
A
$$3$$
B
$$2$$
C
$$1$$
D
$$5$$
4

IIT-JEE 2005 Screening

MCQ (Single Correct Answer)
If $$y=y(x)$$ and it follows the relation $$x\cos \,y + y\,cos\,x = \pi $$ then $$y''(0)=$$
A
$$1$$
B
$$-1$$
C
$${\pi - 1}$$
D
$$ - \pi $$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12