1
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
If y = y(x) satisfies the differential equation
$${8\sqrt x \left( {\sqrt {9 + \sqrt x } } \right)dy = {{\left( {\sqrt {4 + \sqrt {9 + \sqrt x } } } \right)}^{ - 1}}}$$
dx, x > 0 and y(0) = $$\sqrt 7 $$, then y(256) =
$${8\sqrt x \left( {\sqrt {9 + \sqrt x } } \right)dy = {{\left( {\sqrt {4 + \sqrt {9 + \sqrt x } } } \right)}^{ - 1}}}$$
dx, x > 0 and y(0) = $$\sqrt 7 $$, then y(256) =
2
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
The function $$y=f(x)$$ is the solution of the differential equation
$${{dy} \over {dx}} + {{xy} \over {{x^2} - 1}} = {{{x^4} + 2x} \over {\sqrt {1 - {x^2}} }}\,$$ in $$(-1,1)$$ satisfying $$f(0)=0$$.
Then $$\int\limits_{ - {{\sqrt 3 } \over 2}}^{{{\sqrt 3 } \over 2}} {f\left( x \right)} \,d\left( x \right)$$ is
$${{dy} \over {dx}} + {{xy} \over {{x^2} - 1}} = {{{x^4} + 2x} \over {\sqrt {1 - {x^2}} }}\,$$ in $$(-1,1)$$ satisfying $$f(0)=0$$.
Then $$\int\limits_{ - {{\sqrt 3 } \over 2}}^{{{\sqrt 3 } \over 2}} {f\left( x \right)} \,d\left( x \right)$$ is
3
JEE Advanced 2013 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
A curve passes through the point $$\left( {1,{\pi \over 6}} \right)$$. Let the slope of
the curve at each point $$(x,y)$$ be $${y \over x} + \sec \left( {{y \over x}} \right),x > 0.$$
Then the equation of the curve is
the curve at each point $$(x,y)$$ be $${y \over x} + \sec \left( {{y \over x}} \right),x > 0.$$
Then the equation of the curve is
4
IIT-JEE 2009 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0
Match the statements/expressions in Column I with the values given in Column II:
Column I | Column II | ||
---|---|---|---|
(A) | The number of solutions of the equation $$x{e^{\sin x}} - \cos x = 0$$ in the interval $$\left( {0,{\pi \over 2}} \right)$$ | (P) | 1 |
(B) | Value(s) of $$k$$ for which the planes $$kx + 4y + z = 0,4x + ky + 2z = 0$$ and $$2x + 2y + z = 0$$ intersect in a straight line | (Q) | 2 |
(C) | Value(s) of $$k$$ for which $$|x - 1| + |x - 2| + |x + 1| + |x + 2| = 4k$$ has integer solution(s) | (R) | 3 |
(D) | If $$y' = y + 1$$ and $$y(0) = 1$$ then value(s) of $$y(\ln 2)$$ | (S) | 4 |
(T) | 5 |
Questions Asked from Differential Equations (MCQ (Single Correct Answer))
Number in Brackets after Paper Indicates No. of Questions
JEE Advanced 2017 Paper 2 Offline (1)
JEE Advanced 2014 Paper 2 Offline (1)
JEE Advanced 2013 Paper 1 Offline (1)
IIT-JEE 2009 Paper 2 Offline (1)
IIT-JEE 2009 Paper 1 Offline (1)
IIT-JEE 2008 Paper 2 Offline (2)
IIT-JEE 2008 Paper 1 Offline (1)
IIT-JEE 2005 Screening (4)
IIT-JEE 2004 Screening (1)
IIT-JEE 2003 Screening (1)
IIT-JEE 2000 Screening (1)
IIT-JEE 1999 (1)
IIT-JEE 1998 (1)
JEE Advanced Subjects
Physics
Mechanics
Units & Measurements
Motion
Laws of Motion
Work Power & Energy
Impulse & Momentum
Rotational Motion
Properties of Matter
Heat and Thermodynamics
Simple Harmonic Motion
Waves
Gravitation
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of Chemistry
Structure of Atom
Redox Reactions
Gaseous State
Equilibrium
Solutions
States of Matter
Thermodynamics
Chemical Kinetics and Nuclear Chemistry
Electrochemistry
Solid State & Surface Chemistry
Inorganic Chemistry
Periodic Table & Periodicity
Chemical Bonding & Molecular Structure
Isolation of Elements
Hydrogen
s-Block Elements
p-Block Elements
d and f Block Elements
Coordination Compounds
Salt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and Inequalities
Sequences and Series
Mathematical Induction and Binomial Theorem
Matrices and Determinants
Permutations and Combinations
Probability
Vector Algebra and 3D Geometry
Complex Numbers
Trigonometry
Coordinate Geometry
Calculus