NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

IIT-JEE 2009

Subjective
Match the statements/expressions given in Column-$$I$$ with the values given in Column-$$II.$$

$$\,\,\,\,\,$$ $$\,\,\,\,\,$$ $$\,\,\,\,\,$$ Column-$$I$$
(A)$$\,\,\,\,\,$$ The number of solutions of the equations
$$\,\,\,\,\,$$$$x\,{e^{\sin x}} - \cos x = 0$$ in the interval $$\left( {0,{\pi \over 2}} \right)$$
(B)$$\,\,\,\,\,$$ Value(s) of $$k$$ for which the planes $$kx+4y+z=0,$$ $$4x+ky+2z=0$$
$$\,\,\,\,\,$$ and $$2x+2y+z=0$$ intersect in a straight line
(C)$$\,\,\,\,\,$$ Value(s) of $$k$$ for which $$\,\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x + 1} \right| + \left| {x + 2} \right| = 4k$$
$$\,\,\,\,\,$$has integer solutions(s)
(D)$$\,\,\,\,\,$$ If $$y'=y+1$$ and $$y(0)=1, $$ then value(s) of $$y$$($$ln$$ $$2$$)

$$\,\,\,\,\,$$ $$\,\,\,\,\,$$ $$\,\,\,\,\,$$Column-$$II$$
(p)$$\,\,\,\,\,$$ $$1$$
(q)$$\,\,\,\,\,$$ $$2$$
(r)$$\,\,\,\,\,$$ $$3$$
(s)$$\,\,\,\,\,$$ $$4$$
(t)$$\,\,\,\,\,$$ $$5$$

Answer

$$\left( A \right) \to p;\,\,\left( B \right) \to q,s;\,\,\left( C \right) \to q,r,s,t;\,\,\left( D \right) \to r$$
2

IIT-JEE 2009

Subjective
Match the statements / expressions given in Column-$$I$$ with the values given in Column-$$II.$$

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$I$$
(A)$$\,\,\,\,$$ Root(s) of the equations $$2{\sin ^2}\theta + {\sin ^2}2\theta = 2$$
(B)$$\,\,\,\,$$ Points of discontinuity of the unction $$f\left( x \right) = \left[ {{{6x} \over \pi }} \right]\cos \left[ {{{3x} \over \pi }} \right],$$ $$f$$ where $$\left[ y \right]$$ denotes the largest integer less than or equal to $$y$$
(C)$$\,\,\,\,$$ Volume of the parallelopiped with its edges represented by the vectors $$\,\widehat i + \widehat j,\widehat i + 2\widehat j$$ and $$\widehat i + \widehat j + \pi \widehat k$$
(D)$$\,\,\,\,$$ Angle between vector $${\overrightarrow a }$$ and $${\overrightarrow b }$$ where $${\overrightarrow a },$$ $${\overrightarrow b }$$ and $${\overrightarrow c }$$ are unit vectors satisfying $$\overrightarrow a + \overrightarrow b + \sqrt 3 \,\,\overrightarrow c = \overrightarrow 0 $$

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$II$$
(p)$$\,\,\,\,$$ $${\pi \over 6}$$
(q)$$\,\,\,\,$$ $${\pi \over 4}$$
(r)$$\,\,\,\,$$ $${\pi \over 3}$$
(s)$$\,\,\,\,$$ $${\pi \over 2}$$
(t)$$\,\,\,\,$$ $$\pi $$

Answer

$$\left( A \right) \to q,s;\,\,\left( B \right) \to p,r,s,t;\,\,\left( C \right) \to t;\,\,\left( D \right) \to r$$
3

IIT-JEE 2007

Subjective
Consider the following linear equations $$ax+by+cz=0;$$ $$\,\,\,$$ $$bx+cy+az=0;$$ $$\,\,\,$$ $$cx+ay+bz=0$$

Match the conditions/expressions in Column $$I$$ with statements in Column $$II$$ and indicate your answer by darkening the appropriate bubbles in the $$4 \times 4$$ matrix given in the $$ORS.$$

$$\,\,\,$$ Column $$I$$
(A)$$\,\,a + b + c \ne 0$$ and $${a^2} + {b^2} + {c^2} = ab + bc + ca$$
(B)$$\,\,$$ $$a + b + c = 0$$ and $${a^2} + {b^2} + {c^2} \ne ab + bc + ca$$
(C)$$\,\,a + b + c \ne 0$$ and $${a^2} + {b^2} + {c^2} \ne ab + bc + ca$$
(D)$$\,\,$$ $$a + b + c = 0$$ and $${a^2} + {b^2} + {c^2} = ab + bc + ca$$

$$\,\,\,$$ Column $$II$$
(p)$$\,\,\,$$ the equations represents planes meeting only at asingle point
(q)$$\,\,\,$$ the equations represents the line $$x=y=z.$$
(r)$$\,\,\,$$ the equations represent identical planes.
(s) $$\,\,\,$$ the equations represents the whole of the three dimensional space.

Answer

$$\left( A \right) \to r;\,\,\left( B \right) \to q;\,\,\left( C \right) \to p;\,\,\left( D \right) \to s$$
4

IIT-JEE 2006

Subjective
Match the folowing :
(A)$$\,\,\,$$Two rays $$x + y = \left| a \right|$$ and $$ax - y=1$$ intersects each other in the
$$\,\,\,\,\,\,\,\,\,\,$$first quadrant in interval $$a \in \left( {{a_0},\,\,\infty } \right),$$ the value of $${{a_0}}$$ is
(B)$$\,\,\,$$ Point $$\left( {\alpha ,\beta ,\gamma } \right)$$ lies on the plane $$x+y+z=2.$$
$$\,\,\,\,\,\,\,\,\,\,\,$$Let $$\overrightarrow a = \alpha \widehat i + \beta \widehat j + \gamma \widehat k,\widehat k \times \left( {\widehat k \times \overrightarrow a } \right) = 0,$$ then $$\gamma = $$
(C)$$\,\,\,$$$$\left| {\int\limits_0^1 {\left( {1 - {y^2}} \right)dy} } \right| + \left| {\int\limits_1^0 {\left( {{y^2} - 1} \right)dy} } \right|$$
(D)$$\,\,\,$$If $$\sin A\,\,\sin B\,\,\sin C + \cos A\,\,\cos B = 1,$$ then the value of $$\sin C = $$

(p)$$\,\,\,$$ $$2$$
(q)$$\,\,\,$$ $${4 \over 3}$$
(r)$$\,\,\,$$ $$\left| {\int\limits_0^1 {\sqrt {1 - xdx} } } \right| + \left| {\int\limits_{ - 1}^0 {\sqrt {1 + xdx} } } \right|$$
(s)$$\,\,\,$$ $$1$$

Answer

$$\left( A \right) \to s;\,\,\left( B \right) \to p;\,\,\left( C \right) \to r,q;\,\,\left( D \right) \to s$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12