1
JEE Advanced 2024 Paper 1 Online
+3
-1

Let $f(x)$ be a continuously differentiable function on the interval $(0, \infty)$ such that $f(1)=2$ and

$$\lim\limits_{t \rightarrow x} \frac{t^{10} f(x)-x^{10} f(t)}{t^9-x^9}=1$$

for each $x>0$. Then, for all $x>0, f(x)$ is equal to :

A
$\frac{31}{11 x}-\frac{9}{11} x^{10}$
B
$\frac{9}{11 x}+\frac{13}{11} x^{10}$
C
$\frac{-9}{11 x}+\frac{31}{11} x^{10}$
D
$\frac{13}{11 x}+\frac{9}{11} x^{10}$
2
JEE Advanced 2023 Paper 2 Online
+3
-1
Let $f:[1, \infty) \rightarrow \mathbb{R}$ be a differentiable function such that $f(1)=\frac{1}{3}$ and $3 \int\limits_1^x f(t) d t=x f(x)-\frac{x^3}{3}, x \in[1, \infty)$. Let $e$ denote the base of the natural logarithm. Then the value of $f(e)$ is :
A
$\frac{e^2+4}{3}$
B
$\frac{\log _e 4+e}{3}$
C
$\frac{4 e^2}{3}$
D
$\frac{e^2-4}{3}$
3
JEE Advanced 2017 Paper 2 Offline
+3
-1
If y = y(x) satisfies the differential equation

$${8\sqrt x \left( {\sqrt {9 + \sqrt x } } \right)dy = {{\left( {\sqrt {4 + \sqrt {9 + \sqrt x } } } \right)}^{ - 1}}}$$

dx, x > 0 and y(0) = $$\sqrt 7$$, then y(256) =
A
16
B
3
C
9
D
80
4
JEE Advanced 2014 Paper 2 Offline
+3
-1
The function $$y=f(x)$$ is the solution of the differential equation
$${{dy} \over {dx}} + {{xy} \over {{x^2} - 1}} = {{{x^4} + 2x} \over {\sqrt {1 - {x^2}} }}\,$$ in $$(-1,1)$$ satisfying $$f(0)=0$$.
Then $$\int\limits_{ - {{\sqrt 3 } \over 2}}^{{{\sqrt 3 } \over 2}} {f\left( x \right)} \,d\left( x \right)$$ is
A
$${\pi \over 3} - {{\sqrt 3 } \over 2}$$
B
$${\pi \over 3} - {{\sqrt 3 } \over 4}$$
C
$${\pi \over 6} - {{\sqrt 3 } \over 4}$$
D
$${\pi \over 6} - {{\sqrt 3 } \over 2}$$
EXAM MAP
Medical
NEET