1
JEE Advanced 2024 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Let $f(x)$ be a continuously differentiable function on the interval $(0, \infty)$ such that $f(1)=2$ and

$$ \lim\limits_{t \rightarrow x} \frac{t^{10} f(x)-x^{10} f(t)}{t^9-x^9}=1 $$

for each $x>0$. Then, for all $x>0, f(x)$ is equal to :

A
$\frac{31}{11 x}-\frac{9}{11} x^{10}$
B
$\frac{9}{11 x}+\frac{13}{11} x^{10}$
C
$\frac{-9}{11 x}+\frac{31}{11} x^{10}$
D
$\frac{13}{11 x}+\frac{9}{11} x^{10}$
2
JEE Advanced 2023 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $f:[1, \infty) \rightarrow \mathbb{R}$ be a differentiable function such that $f(1)=\frac{1}{3}$ and $3 \int\limits_1^x f(t) d t=x f(x)-\frac{x^3}{3}, x \in[1, \infty)$. Let $e$ denote the base of the natural logarithm. Then the value of $f(e)$ is :
A
$\frac{e^2+4}{3}$
B
$\frac{\log _e 4+e}{3}$
C
$\frac{4 e^2}{3}$
D
$\frac{e^2-4}{3}$
3
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
If y = y(x) satisfies the differential equation

$${8\sqrt x \left( {\sqrt {9 + \sqrt x } } \right)dy = {{\left( {\sqrt {4 + \sqrt {9 + \sqrt x } } } \right)}^{ - 1}}}$$

dx, x > 0 and y(0) = $$\sqrt 7 $$, then y(256) =
A
16
B
3
C
9
D
80
4
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
The function $$y=f(x)$$ is the solution of the differential equation
$${{dy} \over {dx}} + {{xy} \over {{x^2} - 1}} = {{{x^4} + 2x} \over {\sqrt {1 - {x^2}} }}\,$$ in $$(-1,1)$$ satisfying $$f(0)=0$$.
Then $$\int\limits_{ - {{\sqrt 3 } \over 2}}^{{{\sqrt 3 } \over 2}} {f\left( x \right)} \,d\left( x \right)$$ is
A
$${\pi \over 3} - {{\sqrt 3 } \over 2}$$
B
$${\pi \over 3} - {{\sqrt 3 } \over 4}$$
C
$${\pi \over 6} - {{\sqrt 3 } \over 4}$$
D
$${\pi \over 6} - {{\sqrt 3 } \over 2}$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12