1
IIT-JEE 1995 Screening
+2
-0.5
Let $$z$$ and $$\omega$$ be two complex numbers such that
$$\left| z \right| \le 1,$$ $$\left| \omega \right| \le 1$$ and $$\left| {z + i\omega } \right| = \left| {z - i\overline \omega } \right| = 2$$ then $$z$$ equals
A
$$1$$ or $$i$$
B
$$i$$ or $$-i$$
C
$$1$$ or $$- 1$$
D
$$i$$ or $$- 1$$
2
IIT-JEE 1995 Screening
+2
-0.5
Let $$z$$ and $$\omega$$ be two non zero complex numbers such that
$$\left| z \right| = \left| \omega \right|$$ and $${\rm A}rg\,z + {\rm A}rg\,\omega = \pi ,$$ then $$z$$ equals
A
$$\omega$$
B
$$- \omega$$
C
$$\overline \omega$$
D
$$- \overline \omega$$
3
IIT-JEE 1992
+2
-0.5
$${\rm{z }} \ne {\rm{0}}$$ is a complex number

Column I

(A) Re z = 0
(B) Arg $$z = {\pi \over 4}$$

Column II

(p) Re$${z^2}$$ = 0
(q) Im$${z^2}$$ = 0
(r) Re$${z^2}$$ = Im$${z^2}$$
A
(A) - q, (B) - p
B
(A) - p, (B) - q
C
(A) - r, (B) - p
D
(A) - p, (B) - r
4
IIT-JEE 1985
+2
-0.5
If $$a,\,b,\,c$$ and $$u,\,v,\,w$$ are complex numbers representing the vertics of two triangles such that $$c = \left( {1 - r} \right)a + rb$$ and $$w = \left( {1 - r} \right)u + rv,$$ where $$w = \left( {1 - r} \right)u + rv,$$ is a complex number, then the two triangles
A
have the same area
B
are similar
C
are congruent
D
none of these
EXAM MAP
Medical
NEET