1

IIT-JEE 2005 Screening

MCQ (Single Correct Answer)
Tangent to the curve $$y = {x^2} + 6$$ at a point $$(1, 7)$$ touches the circle $${x^2} + {y^2} + 16x + 12y + c = 0$$ at a point $$Q$$. Then the coordinates of $$Q$$ are
A
$$(-6, -11)$$
B
$$(-9, -13)$$
C
$$(-10, -15)$$
D
$$(-6, -7)$$
2

IIT-JEE 2005 Screening

MCQ (Single Correct Answer)
The minimum area of triangle formed by the tangent to the $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ and coordinate axes is
A
$$ab$$ sq. units
B
$${{{{a^2} + {b^2}} \over 2}}$$ sq. units
C
$${{{{\left( {a + b} \right)}^2}} \over 2}$$ sq. units
D
$${{{a^2} + ab + {b^2}} \over 3}$$ sq. units
3

IIT-JEE 2004 Screening

MCQ (Single Correct Answer)
If the line $$62x + \sqrt 6 y = 2$$ touches the hyperbola $${x^2} - 2{y^2} = 4$$, then the point of contact is
A
$$\left( { - 2,\,\sqrt 6 } \right)$$
B
$$\left( { - 5,\,2\sqrt 6 } \right)$$
C
$$\left( {{1 \over 2},{1 \over {\sqrt 6 }}} \right)$$
D
$$\left( {4, - \,\sqrt 6 } \right)$$
4

IIT-JEE 2004 Screening

MCQ (Single Correct Answer)
If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$ then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is
A
$${1 \over {2{x^2}}} + {1 \over {4{y^2}}} = 1$$
B
$${1 \over {4{x^2}}} + {1 \over {2{y^2}}} = 1$$
C
$${{{x^2}} \over 2} + {{{y^2}} \over 4} = 1$$
D
$${{{x^2}} \over 4} + {{{y^2}} \over 2} = 1$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12