1
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
By appropriately matching the information given in the three columns of the following table.

Columns 1, 2 and 3 contain conics, equations of tangents to the conics and points of contact, respectively.

Column - 1 Column - 2 Column - 3
(i) $${x^2} + {y^2} = a$$ $$my = {m^2}x + a$$ $$\left( {{a \over {{m^2}}},\,{{2a} \over m}} \right)$$
(ii) $${x^2}{a^2}{y^2} = {a^2}]$$ $$y = mx + a\sqrt {{m^2} + 1} $$ $$\left( {{{ - ma} \over {\sqrt {{m^2} + 1} }},\,{a \over {\sqrt {{m^2} + 1} }}} \right)$$
(iii) $${y^2} = 4ax$$ $$y = mx + \sqrt {{a^2}{m^2} - 1} $$ $$\left( {{{ - {a^2}m} \over {\sqrt {{a^2}{m^2} + 1} }},\,{1 \over {\sqrt {{a^2}{m^2} + 1} }}} \right)$$
(iv) $${x^2} - {a^2}{y^2} = {a^2}$$ $$y = mx + \sqrt {{a^2}{m^2} + 1} $$ $$\left( {{{ - {a^2}m} \over {\sqrt {{a^2}{m^2} - 1} }},\,{{ - 1} \over {\sqrt {{a^2}{m^2} - 1} }}} \right)$$
If a tangent to a suitable conic (Column 1) is found to be y = x + 8 and its point of contact is (8, 16), then which of the following options is the only CORRECT combination?
A
(III) (i) (P)
B
(I) (ii) (Q)
C
(II) (iv) (R)
D
(III) (ii) (Q)
2
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$a, r, s, t$$ be nonzero real numbers. Let $$P\,\,\left( {a{t^2},2at} \right),\,\,Q,\,\,\,R\,\,\left( {a{r^2},2ar} \right)$$ and $$S\,\,\left( {a{s^2},2as} \right)$$ be distinct points on the parabola $${y^2} = 4ax$$. Suppose that $$PQ$$ is the focal chord and lines $$QR$$ and $$PK$$ are parallel, where $$K$$ is the point $$(2a,0)$$

The value of $$r$$ is

A
$$ - {1 \over t}$$
B
$${{{t^2} + 1} \over t}$$
C
$$ {1 \over t}$$
D
$${{{t^2} - 1} \over t}$$
3
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$a, r, s, t$$ be nonzero real numbers. Let $$P\,\,\left( {a{t^2},2at} \right),\,\,Q,\,\,\,R\,\,\left( {a{r^2},2ar} \right)$$ and $$S\,\,\left( {a{s^2},2as} \right)$$ be distinct points on the parabola $${y^2} = 4ax$$. Suppose that $$PQ$$ is the focal chord and lines $$QR$$ and $$PK$$ are parallel, where $$K$$ is the point $$(2a,0)$$

If $$st=1$$, then the tangent at $$P$$ and the normal at $$S$$ to the parabola meet at a point whose ordinate is

A
$${{{{\left( {{t^2} + 1} \right)}^2}} \over {2{t^3}}}$$
B
$${{a{{\left( {{t^2} + 1} \right)}^2}} \over {2{t^3}}}$$
C
$${{a{{\left( {{t^2} + 1} \right)}^2}} \over {{t^3}}}$$
D
$${{a{{\left( {{t^2} + 2} \right)}^2}} \over {{t^3}}}$$
4
JEE Advanced 2013 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
A line $$L:y=mx+3$$ meets $$y$$-axis at R$$(0, 3)$$ and the arc of the parabola $${y^2} = 16x,$$ $$0 \le y \le 6$$ at the point $$F\left( {{x_0},{y_0}} \right)$$. The tangent to the parabola at $$F\left( {{x_0},{y_0}} \right)$$ intersects the $$y$$-axis at $$G\left( {0,{y_1}} \right)$$. The slope $$m$$ of the line $$L$$ is chosen such that the area of the triangle $$EFG$$ has a local maximum.

Match List $$I$$ with List $$II$$ and select the correct answer using the code given below the lists:

List $$I$$
P.$$\,\,\,m = $$
Q.$$\,\,\,$$Maximum area of $$\Delta EFG$$ is
R.$$\,\,\,$$ $${y_0} = $$
S.$$\,\,\,$$ $${y_1} = $$

List $$II$$
1.$$\,\,\,$$ $${1 \over 2}$$
2.$$\,\,\,$$ $$4$$
3.$$\,\,\,$$ $$2$$
4.$$\,\,\,$$ $$1$$

A
$$P = 4,Q = 1,R = 2,S = 3$$
B
$$P = 3,Q = 4,R = 1,S = 2$$
C
$$P = 1,Q = 3,R = 2,S = 4$$
D
$$P = 1,Q = 3,R = 4,S = 2$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12