NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

### IIT-JEE 2008

A circle C of radius 1 is inscribed in an equilateral triangle PQR. The points of contact of C with the sides PQ, QR, RP are D, E, F, respectively. The line PQ is given by the equation $$\sqrt 3 x\, + \,y\, - \,6 = 0$$ and the point D is $$\left( {{{3\,\sqrt 3 } \over 2},\,{3 \over 2}} \right)$$. Further, it is given that the origin and the centre of C are on the same side of the line PQ.

Equations of the sides QR, RP are

A
$$y = {2 \over {\sqrt 3 }}\,x + \,1,\,\,y = \, - {2 \over {\sqrt 3 }}\,x - 1$$
B
$$y = {1 \over {\sqrt 3 }}\,x,\,\,y = \,0$$
C
$$y = {{\sqrt 3 } \over 2}\,x + \,1,\,\,y = \, - {{\sqrt 3 } \over 2}\,x - 1$$
D
$$y = \sqrt 3 \,x,\,\,y = \,0$$
2

### IIT-JEE 2008

A circle C of radius 1 is inscribed in an equilateral triangle PQR. The points of contact of C with the sides PQ, QR, RP are D, E, F, respectively. The line PQ is given by the equation $$\sqrt 3 x\, + \,y\, - \,6 = 0$$ and the point D is $$\left( {{{3\,\sqrt 3 } \over 2},\,{3 \over 2}} \right)$$. Further, it is given that the origin and the centre of C are on the same side of the line PQ.

Ponits E and F are given by

A
$$\left( {{{\,\sqrt 3 } \over 2},\,{3 \over 2}} \right),\,\left( {\sqrt 3 ,\,0} \right)$$
B
$$\left( {{{\,\sqrt 3 } \over 2},\,{1 \over 2}} \right),\,\left( {\sqrt 3 ,\,0} \right)$$
C
$$\left( {{{\,\sqrt 3 } \over 2},\,{3 \over 2}} \right),\,\left( {{{\,\sqrt 3 } \over 2},\,{1 \over 2}} \right)$$
D
$$\left( {{{\,3} \over 2},\,{{\sqrt 3 } \over 2}} \right),\,\left( {{{\,\sqrt 3 } \over 2},\,{1 \over 2}} \right)$$
3

### IIT-JEE 2008

A circle C of radius 1 is inscribed in an equilateral triangle PQR. The points of contact of C with the sides PQ, QR, RP are D, E, F, respectively. The line PQ is given by the equation $$\sqrt 3 x\, + \,y\, - \,6 = 0$$ and the point D is $$\left( {{{3\,\sqrt 3 } \over 2},\,{3 \over 2}} \right)$$. Further, it is given that the origin and the centre of C are on the same side of the line PQ.

The equation of circle C is

A
$${\left( {x\, - 2\sqrt 3 \,} \right)^2} + {(y - 1)^2} = 1$$
B
$${\left( {x\, - 2\sqrt 3 \,} \right)^2} + {(y + {1 \over 2})^2} = 1$$
C
$${\left( {x\, - \sqrt 3 \,} \right)^2} + {(y + 1)^2} = 1$$
D
$${\left( {x\, - \sqrt 3 \,} \right)^2} + {(y - 1)^2} = 1$$
4

### IIT-JEE 2006

ABCD is a square of side length 2 units. $${C_1}$$ is the circle touching all the sides of the square ABCD and $${C_2}$$ is the circumcircle of square ABCD. L is a fixed line in the same plane and R is a fixed point.

If P is any point of $${C_1}$$ and Q is another point on $${C_2}$$, then

$${{P{A^2}\, + \,P{B^2}\, + P{C^2}\, + P{D^2}} \over {Q{A^2} + \,Q{B^2}\, + Q{C^2}\, + Q{D^2}}}$$ is equal to
A
0.75
B
1.25
C
1
D
0.5

### Joint Entrance Examination

JEE Main JEE Advanced WB JEE

### Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

NEET

Class 12