1
IIT-JEE 1986
MCQ (Single Correct Answer)
+2
-0.5
Let $$\overrightarrow a = {a_1}i + {a_2}j + {a_3}k,\,\,\,\overrightarrow b = {b_1}i + {b_2}j + {b_3}k$$ and $$\overrightarrow c = {c_1}i + {c_2}j + {c_3}k$$ be three non-zero vectors such that $$\overrightarrow c $$ is a unit vector perpendicular to both the vectors $$\overrightarrow a $$ and $$\overrightarrow b .$$ If the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is $${\pi \over 6},$$ then
$${\left| {\matrix{ {{a_1}} & {{a_2}} & {{a_3}} \cr {{b_1}} & {{b_2}} & {{b_3}} \cr {{c_1}} & {{c_2}} & {{c_3}} \cr } } \right|^2}$$ is equal to
A
$$0$$
B
$$1$$
C
$${1 \over 4}\left( {a_1^2 + a_2^2 + a_2^3} \right)\left( {b_1^2 + b_2^2 + b_3^2} \right)$$
D
$${3 \over 4}\left( {a_1^2 + a_2^2 + a_3^2} \right)\left( {b_1^2 + b_2^2 + b_3^2} \right)\left( {c_1^2 + c_2^2 + c_3^2} \right)$$
2
IIT-JEE 1982
MCQ (Single Correct Answer)
+2
-0.5
For non-zero vectors $${\overrightarrow a ,\,\overrightarrow b ,\overrightarrow c },$$ $$\left| {\left( {\overrightarrow a \times \overrightarrow b } \right).\overrightarrow c } \right| = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|$$ holds if and only if
A
$$\overrightarrow a \,.\,\overrightarrow b = 0,\overrightarrow b \,.\,\overrightarrow c = 0$$
B
$$\overrightarrow b \,.\,\overrightarrow c = 0,\overrightarrow c \,.\,\overrightarrow a = 0$$
C
$$\overrightarrow c \,.\,\overrightarrow a = 0,\overrightarrow a \,.\,\overrightarrow b = 0$$
D
$$\overrightarrow a \,.\,\overrightarrow b = \overrightarrow b \,.\,\overrightarrow c = \overrightarrow c \,.\,\overrightarrow a = 0$$
3
IIT-JEE 1981
MCQ (Single Correct Answer)
+2
-0.5
The scalar $$\overrightarrow A .\left( {\overrightarrow B + \overrightarrow C } \right) \times \left( {\overrightarrow A + \overrightarrow B + \overrightarrow C } \right)$$ equals :
A
$$0$$
B
$$\left[ {\overrightarrow A \,\overrightarrow B \,\overrightarrow C } \right] + \left[ {\overrightarrow B \,\overrightarrow C \,\overrightarrow A } \right]$$
C
$$\left[ {\overrightarrow A \,\overrightarrow B \,\overrightarrow C } \right]$$
D
None of these
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12