1
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+4
-1
If $$\overrightarrow a \,,\,\overrightarrow b ,\overrightarrow c $$ are three non-zero, non-coplanar vectors and
$$\overrightarrow {{b_1}} = \overrightarrow b - {{\overrightarrow b .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a ,\overrightarrow {{b_2}} = \overrightarrow b + {{\overrightarrow b .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a ,$$
$$\overrightarrow {{c_1}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a + {{\overrightarrow b .\,\overrightarrow c } \over {{{\left| c \right|}^2}}}{\overrightarrow b _1},\,\,\overrightarrow {{c_2}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a - {{\overrightarrow b \,.\,\overrightarrow c } \over {{{\left| {{{\overrightarrow b }_1}} \right|}^2}}}{\overrightarrow b _1},$$
$$\overrightarrow {{c_3}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a + {{\overrightarrow b .\,\overrightarrow c } \over {{{\left| c \right|}^2}}}{\overrightarrow b _1},\,\,\overrightarrow {{c_4}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a - {{\overrightarrow b \,.\,\overrightarrow c } \over {{{\left| {{{\overrightarrow b }_1}} \right|}^2}}}{\overrightarrow b _1},$$
then the set of orthogonal vectors is
A
$$\left( {\overrightarrow a ,\overrightarrow {{b_1}} ,\overrightarrow {{c_3}} } \right)$$
B
$$\left( {\overrightarrow a ,\overrightarrow {{b_1}} ,\overrightarrow {{c_2}} } \right)$$
C
$$\left( {\overrightarrow a ,\overrightarrow {{b_1}} ,\overrightarrow {{c_1}} } \right)$$
D
$$\left( {\overrightarrow a ,\overrightarrow {{b_2}} ,\overrightarrow {{c_2}} } \right)$$
2
IIT-JEE 2004 Screening
MCQ (Single Correct Answer)
+4
-1
If $$\overrightarrow a = \left( {\widehat i + \widehat j + \widehat k} \right),\overrightarrow a .\overrightarrow b = 1$$ and $$\overrightarrow a \times \overrightarrow b = \widehat j - \widehat k,$$ then $$\overrightarrow b $$ is
A
$$\widehat i - \widehat j + \widehat k$$
B
$$2\widehat j - \widehat k$$
C
$$\widehat i$$
D
$$2\widehat i$$
3
IIT-JEE 2004 Screening
MCQ (Single Correct Answer)
+4
-1
The unit vector which is orthogonal to the vector $$3\overrightarrow i + 2\overrightarrow j + 6\overrightarrow k $$ and is coplanar with the vectors $$\,2\widehat i + \widehat j + \widehat k$$ and $$\,\widehat i - \widehat j + \widehat k$$$$\,\,\,$$ is
A
$${{2\widehat i - 6\widehat j + \widehat k} \over {\sqrt {41} }}$$
B
$${{2\widehat i - 3\widehat j} \over {\sqrt {13} }}$$
C
$${{3\widehat i - \widehat k} \over {\sqrt {10} }}$$
D
$${{4\widehat i + 3\widehat j - 3\widehat k} \over {\sqrt {34} }}$$
4
IIT-JEE 2003 Screening
MCQ (Single Correct Answer)
+4
-1
The value of $$'a'$$ so that the volume of parallelopiped formed by $$\widehat i + a\widehat j + \widehat k,\widehat j + a\widehat k$$ and $$a\widehat i + \widehat k$$ becomes minimum is
A
$$-3$$
B
$$3$$
C
$$1/\sqrt 3 $$
D
$$\sqrt 3 $$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12