1
IIT-JEE 2005 Screening
+4
-1
If $$\overrightarrow a \,,\,\overrightarrow b ,\overrightarrow c$$ are three non-zero, non-coplanar vectors and
$$\overrightarrow {{b_1}} = \overrightarrow b - {{\overrightarrow b .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a ,\overrightarrow {{b_2}} = \overrightarrow b + {{\overrightarrow b .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a ,$$
$$\overrightarrow {{c_1}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a + {{\overrightarrow b .\,\overrightarrow c } \over {{{\left| c \right|}^2}}}{\overrightarrow b _1},\,\,\overrightarrow {{c_2}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a - {{\overrightarrow b \,.\,\overrightarrow c } \over {{{\left| {{{\overrightarrow b }_1}} \right|}^2}}}{\overrightarrow b _1},$$
$$\overrightarrow {{c_3}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a + {{\overrightarrow b .\,\overrightarrow c } \over {{{\left| c \right|}^2}}}{\overrightarrow b _1},\,\,\overrightarrow {{c_4}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a - {{\overrightarrow b \,.\,\overrightarrow c } \over {{{\left| {{{\overrightarrow b }_1}} \right|}^2}}}{\overrightarrow b _1},$$
then the set of orthogonal vectors is
A
$$\left( {\overrightarrow a ,\overrightarrow {{b_1}} ,\overrightarrow {{c_3}} } \right)$$
B
$$\left( {\overrightarrow a ,\overrightarrow {{b_1}} ,\overrightarrow {{c_2}} } \right)$$
C
$$\left( {\overrightarrow a ,\overrightarrow {{b_1}} ,\overrightarrow {{c_1}} } \right)$$
D
$$\left( {\overrightarrow a ,\overrightarrow {{b_2}} ,\overrightarrow {{c_2}} } \right)$$
2
IIT-JEE 2004 Screening
+4
-1
If $$\overrightarrow a = \left( {\widehat i + \widehat j + \widehat k} \right),\overrightarrow a .\overrightarrow b = 1$$ and $$\overrightarrow a \times \overrightarrow b = \widehat j - \widehat k,$$ then $$\overrightarrow b$$ is
A
$$\widehat i - \widehat j + \widehat k$$
B
$$2\widehat j - \widehat k$$
C
$$\widehat i$$
D
$$2\widehat i$$
3
IIT-JEE 2004 Screening
+4
-1
If the lines $${{x - 1} \over 2} = {{y + 1} \over 3} = {{z - 1} \over 4}$$ and $$\,{{x - 3} \over 1} = {{y - k} \over 2} = {z \over 1}$$ intersect, then the value of $$k$$ is
A
$$3/2$$
B
$$9/2$$
C
$$-2/9$$
D
$$-3/2$$
4
IIT-JEE 2004 Screening
+4
-1
The unit vector which is orthogonal to the vector $$3\overrightarrow i + 2\overrightarrow j + 6\overrightarrow k$$ and is coplanar with the vectors $$\,2\widehat i + \widehat j + \widehat k$$ and $$\,\widehat i - \widehat j + \widehat k$$$$\,\,\,$$ is
A
$${{2\widehat i - 6\widehat j + \widehat k} \over {\sqrt {41} }}$$
B
$${{2\widehat i - 3\widehat j} \over {\sqrt {13} }}$$
C
$${{3\widehat i - \widehat k} \over {\sqrt {10} }}$$
D
$${{4\widehat i + 3\widehat j - 3\widehat k} \over {\sqrt {34} }}$$
EXAM MAP
Medical
NEET