1
IIT-JEE 2011 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$\overrightarrow a = \widehat i + \widehat j + \widehat k,\,\overrightarrow b = \widehat i - \widehat j + \widehat k$$ and $$\overrightarrow c = \widehat i - \widehat j - \widehat k$$ be three vectors. A vector $$\overrightarrow v $$ in the plane of $$\overrightarrow a $$ and $$\overrightarrow b ,$$ whose projection on $$\overrightarrow c $$ is $${{1 \over {\sqrt 3 }}}$$ , is given by
A
$$\widehat i - 3\widehat j + 3\widehat k$$
B
$$-3\widehat i - 3\widehat j - \widehat k$$
C
$$3\widehat i - \widehat j + 3\widehat k$$
D
$$\widehat i + 3\widehat j - 3\widehat k$$
2
IIT-JEE 2011 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-0
Match the statements given in Column -$$I$$ with the values given in Column-$$II.$$

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$I$$
(A) $$\,\,\,\,$$If $$\overrightarrow a = \widehat j + \sqrt 3 \widehat k,\overrightarrow b = - \widehat j + \sqrt 3 \widehat k$$ and $$\overrightarrow c = 2\sqrt 3 \widehat k$$ form a triangle, then the internal angle of the triangle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is
(B)$$\,\,\,\,$$ If $$\int\limits_a^b {\left( {f\left( x \right) - 3x} \right)dx = {a^2} - {b^2},} $$ then the value of $$f$$ $$\left( {{\pi \over 6}} \right)$$ is
(C)$$\,\,\,\,$$ The value of $${{{\pi ^2}} \over {\ell n3}}\int\limits_{7/6}^{5/6} {\sec \left( {\pi x} \right)dx} $$ is
(D)$$\,\,\,\,$$ The maximum value of $$\left| {Arg\left( {{1 \over {1 - z}}} \right)} \right|$$ for $$\left| z \right| = 1,\,z \ne 1$$ is given by

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$II$$
(p)$$\,\,\,\,$$ $${{\pi \over 6}}$$
(q)$$\,\,\,\,$$ $${{2\pi \over 3}}$$
(r)$$\,\,\,\,$$ $${{\pi \over 3}}$$
(s)$$\,\,\,\,$$ $$\pi $$
(t) $$\,\,\,\,$$ $${{\pi \over 2}}$$

A
$$\left( A \right) \to q;\,\,\left( B \right) \to p;\,\,\left( C \right) \to s;\,\,\left( D \right) \to t$$
B
$$\left( A \right) \to q;\,\,\left( B \right) \to p;\,\,\left( C \right) \to t;\,\,\left( D \right) \to s$$
C
$$\left( A \right) \to p;\,\,\left( B \right) \to q;\,\,\left( C \right) \to s;\,\,\left( D \right) \to t$$
D
$$\left( A \right) \to q;\,\,\left( B \right) \to s;\,\,\left( C \right) \to p;\,\,\left( D \right) \to t$$
3
IIT-JEE 2010 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$P,Q,R$$ and $$S$$ be the points on the plane with position vectors $${ - 2\widehat i - \widehat j,4\widehat i,3\widehat i + 3\widehat j}$$ and $${ - 3\widehat i + 2\widehat j}$$ respectively. The quadrilateral $$PQRS$$ must be a
A
parallelogram, which is neither a rhombus nor a rectangle
B
square
C
rectangle, but not a square
D
rhombus, but not a square
4
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Two adjacent sides of a parallelogram $$ABCD$$ are given by
$$\overrightarrow {AB} = 2\widehat i + 10\widehat j + 11\widehat k$$ and $$\,\overrightarrow {AD} = -\widehat i + 2\widehat j + 2\widehat k$$
The side $$AD$$ is rotated by an acute angle $$\alpha $$ in the plane of the parallelogram so that $$AD$$ becomes $$AD'.$$ If $$AD'$$ makes a right angle with the side $$AB,$$ then the cosine of the angle $$\alpha $$ is given by
A
$${{8 \over 9}}$$
B
$${{{\sqrt {17} } \over 9}}$$
C
$${{1 \over 9}}$$
D
$${{{4\sqrt 5 } \over 9}}$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12