1
IIT-JEE 1995 Screening
+4
-1
If $$\overrightarrow a ,$$ $$\overrightarrow b$$ and $$\overrightarrow c$$ are three non coplanar vectors, then
$$\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right).\left[ {\left( {\overrightarrow a + \overrightarrow b } \right) \times \left( {\overrightarrow a + \overrightarrow c } \right)} \right]$$ equals
A
$$0$$
B
$$\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]$$
C
$$2\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]$$
D
$$-\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]$$
2
IIT-JEE 1994
+4
-1
Let $$\overrightarrow p$$ and $$\overrightarrow q$$ be the position vectors of $$P$$ and $$Q$$ respectively, with respect to $$O$$ and $$\left| {\overrightarrow p } \right| = p,\left| {\overrightarrow q } \right| = q.$$ The points $$R$$ and $$S$$ divide $$PQ$$ internally and externally in the ratio $$2:3$$ respectively. If $$OR$$ and $$OS$$ are perpendicular then
A
$$9{q^2} = 4{q^2}$$
B
$$4{p^2} = 9{q^2}$$
C
$$9p = 4q$$
D
$$4p = 9q$$
3
IIT-JEE 1994
+4
-1
Let $$\alpha ,\beta ,\gamma$$ be distinct real numbers. The points with position
vectors $$\alpha \widehat i + \beta \widehat j + \gamma \widehat k,\,\,\beta \widehat i + \gamma \widehat j + \alpha \widehat k,\,\,\gamma \widehat i + \alpha \widehat j + \beta \widehat k$$
A
are collinear
B
form an equilateral triangle
C
form a scalene triangle
D
form a right-angled triangle
4
IIT-JEE 1993
+1
-0.25
Let $$a, b, c$$ be distinct non-negative numbers. If the vectors $$a\widehat i + a\widehat j + c\widehat k,\widehat i + \widehat k$$ and $$c\widehat i + c\widehat j + b\widehat k$$ lie in a plane, then $$c$$ is
A
the Arithmetic Mean of $$a$$ and $$b$$
B
the Geometric Mean of $$a$$ and $$b$$
C
the Harmonic Mean of $$a$$ and $$b$$
D
equal to zero
EXAM MAP
Medical
NEET
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12