1
IIT-JEE 2001 Screening
MCQ (Single Correct Answer)
+4
-1
If $$\overrightarrow a \,,\,\overrightarrow b $$ and $$\overrightarrow c $$ are unit vectors, then $${\left| {\overrightarrow a - \overrightarrow b } \right|^2} + {\left| {\overrightarrow b - \overrightarrow c } \right|^2} + {\left| {\overrightarrow c - \overrightarrow a } \right|^2}$$ does NOT exceed
A
$$4$$
B
$$9$$
C
$$8$$
D
$$6$$
2
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+4
-1
If the vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ form the sides $$BC,$$ $$CA$$ and $$AB$$ respectively of a triangle $$ABC,$$ then
A
$$\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a = 0$$
B
$$\overrightarrow a \times \overrightarrow b = \overrightarrow b \times \overrightarrow c = \overrightarrow c \times \overrightarrow a $$
C
$$\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow c = \overrightarrow c .\overrightarrow a$$
D
$$\overrightarrow a \times \overrightarrow b + \overrightarrow b \times \overrightarrow c + \overrightarrow c \times \overrightarrow a = \overrightarrow 0 $$
3
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+4
-1
Let the vectors $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ and $$\overrightarrow d $$ be such that
$$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right) = 0.$$ Let $${P_1}$$ and $${P_2}$$ be planes determined
by the pairs of vectors $$\overrightarrow a .\overrightarrow b $$ and $$\overrightarrow c .\overrightarrow d $$ respectively. Then the angle between $${P_1}$$ and $${P_2}$$ is
A
$$0$$
B
$${\pi \over 4}$$
C
$${\pi \over 3}$$
D
$${\pi \over 2}$$
4
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+4
-1
If $$\overrightarrow a \,,\,\overrightarrow b $$ and $$\overrightarrow c $$ are unit coplanar vectors, then the scalar triple product $$\left[ {2\overrightarrow a - \overrightarrow b ,2\overrightarrow b - \overrightarrow c ,2\overrightarrow c - \overrightarrow a } \right] = $$
A
$$0$$
B
$$1$$
C
$$ - \sqrt 3 $$
D
$$ \sqrt 3 $$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12