1
JEE Advanced 2013 Paper 1 Offline
Numerical
+4
-0
Consider the set of eight vectors
$$V = \left\{ {a\widehat i + b\widehat j + c\widehat k:a,b.c \in \left\{ { - 1,1} \right\}} \right\}.$$ Three non-coplanar vectors can be chosen from $$V$$ in $$2p$$ ways. Then $$p$$ is
2
IIT-JEE 2012 Paper 1 Offline
Numerical
+4
-0
If $$\overrightarrow a ,\overrightarrow b$$ and $$\overrightarrow c$$ are unit vectors satisfying
$${\left| {\overrightarrow a - \overrightarrow b } \right|^2} + {\left| {\overrightarrow b - \overrightarrow c } \right|^2} + {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = 9,$$ then $$\left| {2\overrightarrow a + 5\overrightarrow b + 5\overrightarrow c } \right|$$ is
3
IIT-JEE 2011 Paper 2 Offline
Numerical
+4
-0
Let $$\overrightarrow a = - \widehat i - \widehat k,\overrightarrow b = - \widehat i + \widehat j$$ and $$\overrightarrow c = \widehat i + 2\widehat j + 3\widehat k$$ be three given vectors. If $$\overrightarrow r$$ is a vector such that $$\overrightarrow r \times \overrightarrow b = \overrightarrow c \times \overrightarrow b$$ and $$\overrightarrow r .\overrightarrow a = 0,$$ then the value of $$\overrightarrow r .\overrightarrow b$$ is
4
IIT-JEE 2010 Paper 1 Offline
Numerical
+4
-0
If $$\overrightarrow a$$ and $$\overrightarrow b$$ are vectors in space given by $$\overrightarrow a = {{\widehat i - 2\widehat j} \over {\sqrt 5 }}$$ and $$\overrightarrow b = {{2\widehat i + \widehat j + 3\widehat k} \over {\sqrt {14} }},$$ then find the value of $$\,\left( {2\overrightarrow a + \overrightarrow b } \right).\left[ {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow a - 2\overrightarrow b } \right)} \right].$$