1
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$a, r, s, t$$ be nonzero real numbers. Let $$P\,\,\left( {a{t^2},2at} \right),\,\,Q,\,\,\,R\,\,\left( {a{r^2},2ar} \right)$$ and $$S\,\,\left( {a{s^2},2as} \right)$$ be distinct points on the parabola $${y^2} = 4ax$$. Suppose that $$PQ$$ is the focal chord and lines $$QR$$ and $$PK$$ are parallel, where $$K$$ is the point $$(2a,0)$$

If $$st=1$$, then the tangent at $$P$$ and the normal at $$S$$ to the parabola meet at a point whose ordinate is

A
$${{{{\left( {{t^2} + 1} \right)}^2}} \over {2{t^3}}}$$
B
$${{a{{\left( {{t^2} + 1} \right)}^2}} \over {2{t^3}}}$$
C
$${{a{{\left( {{t^2} + 1} \right)}^2}} \over {{t^3}}}$$
D
$${{a{{\left( {{t^2} + 2} \right)}^2}} \over {{t^3}}}$$
2
JEE Advanced 2013 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
A line $$L:y=mx+3$$ meets $$y$$-axis at R$$(0, 3)$$ and the arc of the parabola $${y^2} = 16x,$$ $$0 \le y \le 6$$ at the point $$F\left( {{x_0},{y_0}} \right)$$. The tangent to the parabola at $$F\left( {{x_0},{y_0}} \right)$$ intersects the $$y$$-axis at $$G\left( {0,{y_1}} \right)$$. The slope $$m$$ of the line $$L$$ is chosen such that the area of the triangle $$EFG$$ has a local maximum.

Match List $$I$$ with List $$II$$ and select the correct answer using the code given below the lists:

List $$I$$
P.$$\,\,\,m = $$
Q.$$\,\,\,$$Maximum area of $$\Delta EFG$$ is
R.$$\,\,\,$$ $${y_0} = $$
S.$$\,\,\,$$ $${y_1} = $$

List $$II$$
1.$$\,\,\,$$ $${1 \over 2}$$
2.$$\,\,\,$$ $$4$$
3.$$\,\,\,$$ $$2$$
4.$$\,\,\,$$ $$1$$

A
$$P = 4,Q = 1,R = 2,S = 3$$
B
$$P = 3,Q = 4,R = 1,S = 2$$
C
$$P = 1,Q = 3,R = 2,S = 4$$
D
$$P = 1,Q = 3,R = 4,S = 2$$
3
JEE Advanced 2013 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$PQ$$ be a focal chord of the parabola $${y^2} = 4ax$$. The tangents to the parabola at $$P$$ and $$Q$$ meet at a point lying on the line $$y=2x+a$$, $$a>0$$.

Length of chord $$PQ$$ is

A
$$7a$$
B
$$5a$$
C
$$2a$$
D
$$3a$$
4
JEE Advanced 2013 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$PQ$$ be a focal chord of the parabola $${y^2} = 4ax$$. The tangents to the parabola at $$P$$ and $$Q$$ meet at a point lying on the line $$y=2x+a$$, $$a>0$$.

If chord $$PQ$$ subtends an angle $$\theta $$ at the vertex of $${y^2} = 4ax$$, then tan $$\theta = $$

A
$${2 \over 3}\sqrt 7 $$
B
$${-2 \over 3}\sqrt 7 $$
C
$${2 \over 3}\sqrt 5 $$
D
$${-2 \over 3}\sqrt 5 $$
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12