1
IIT-JEE 2007
MCQ (Single Correct Answer)
+4
-1
Consider the circle $${x^2} + {y^2} = 9$$ and the parabola $${y^2} = 8x$$. They intersect at $$P$$ and $$Q$$ in the first and the fourth quadrants, respectively. Tangent to the circle at $$P$$ and $$Q$$ intersect the $$x$$-axis at $$R$$ and tangents to the parabola at $$P$$ and $$Q$$ intersect the $$x$$-axis at $$S$$.

The ratio of the areas of the triangles $$PQS$$ and $$PQR$$ is

A
$$1:\sqrt 2 $$
B
$$1:2$$
C
$$1:4$$
D
$$1:8$$
2
IIT-JEE 2006
MCQ (Single Correct Answer)
+3
-0.75
The axis of a parabola is along the line $$y = x$$ and the distances of its vertex and focus from origin are $$\sqrt 2 $$ and $$2\sqrt 2 $$ respectively. If vertex and focus both lie in the first quadrant, then the equation of the parabola is
A
$${\left( {x + y} \right)^2} = \left( {x - y - 2} \right)$$
B
$${\left( {x - y} \right)^2} = \left( {x + y - 2} \right)$$
C
$${\left( {x - y} \right)^2} = 4\left( {x + y - 2} \right)$$
D
$${\left( {x - y} \right)^2} = 8\left( {x + y - 2} \right)$$
3
IIT-JEE 2006
MCQ (Single Correct Answer)
+6
-1.5
Match the following : $$(3, 0)$$ is the pt. from which three normals are drawn to the parabola $${y^2} = 4x$$ which meet the parabola in the points $$P, Q $$ and $$R$$. Then

Column $${\rm I}$$
(A) Area of $$\Delta PQR$$
(B) Radius of circumcircle of $$\Delta PQR$$
(C) Centroid of $$\Delta PQR$$
(D) Circumcentre of $$\Delta PQR$$

Column $${\rm I}$$$${\rm I}$$
(p) $$2$$
(q) $$5/2$$
(r) $$(5/2, 0)$$
(s) $$(2/3, 0)$$

A
$$\left( A \right) - \left( p \right),\left( B \right) - \left( q \right),\left( C \right) - \left( s \right),\left( D \right) - \left( r \right)$$
B
$$\left( A \right) - \left( p \right),\left( B \right) - \left( q \right),\left( C \right) - \left( r \right),\left( D \right) - \left( s \right)$$
C
$$\left( A \right) - \left( s \right),\left( B \right) - \left( r \right),\left( C \right) - \left( p \right),\left( D \right) - \left( q \right)$$
D
$$\left( A \right) - \left( r \right),\left( B \right) - \left( s \right),\left( C \right) - \left( q \right),\left( D \right) - \left( p \right)$$
4
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+2
-0.5
Tangent to the curve $$y = {x^2} + 6$$ at a point $$(1, 7)$$ touches the circle $${x^2} + {y^2} + 16x + 12y + c = 0$$ at a point $$Q$$. Then the coordinates of $$Q$$ are
A
$$(-6, -11)$$
B
$$(-9, -13)$$
C
$$(-10, -15)$$
D
$$(-6, -7)$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12