The fourth power of the common difference of an arithmatic progression with integer entries is added to the product of any four consecutive terms of it. Prove that the resulting sum is the square of an integer.
Answer
solve it
2
IIT-JEE 1999
Subjective
Let a, b, c, d be real numbers in G.P. If u, v, w, satisfy the system of equations
u + 2v + 3w = 6
4u + 5v + 6w = 12
6u + 9v = 4
then show that the roots of the equation $$\left( {{1 \over u} + {1 \over v} + {1 \over w}} \right){x^2}$$
$$ + [{(b - c)^2} + {(c - a)^2} + {(d - b)^2}]x + u + v + w = 0$$ and $$20{x^2} + 10{(a - d)^2}x - 9 = 0$$ are reciprocals of each other.
Answer
solve it
3
IIT-JEE 1996
Subjective
The real numbers $${x_1}$$, $${x_2}$$, $${x_3}$$ satisfying the equation $${x^3} - {x^2} + \beta x + \gamma = 0$$ are in AP. Find the intervals in which $$\beta \,\,and\,\gamma $$ lie.
If $${S_1}$$, $${S_2}$$, $${S_3}$$,.............,$${S_n}$$ are the sums of infinite geometric series whose first terms are 1, 2, 3, ...................,n and whose common ratios are $${1 \over 2}$$, $${1 \over 3}$$, $${1 \over 4}$$,....................$$\,{1 \over {n + 1}}$$ respectively, then find the values of $${S_1}^2 + {S_2}^2 + {S_3}^2 + ....... + {S^2}_{2n - 1}$$
Answer
$${{{}^n(2n + 1)\,(4n + 1) - 3} \over 3}$$
Questions Asked from Sequences and Series
On those following papers in Subjective
Number in Brackets after Paper Indicates No. of Questions