1
IIT-JEE 1991
Subjective
+4
-0
Let p be the first of the n arithmetic means between two numbers and q the first of n harmonic means between the same numbers. Show that q does not lie between p and $$\,{\left( {{{n + 1} \over {n - 1}}} \right)^2}\,p$$.
2
IIT-JEE 1991
Subjective
+4
-0
If $${S_1}$$, $${S_2}$$, $${S_3}$$,.............,$${S_n}$$ are the sums of infinite geometric series whose first terms are 1, 2, 3, ...................,n and whose common ratios are $${1 \over 2}$$, $${1 \over 3}$$, $${1 \over 4}$$,....................$$\,{1 \over {n + 1}}$$ respectively, then find the values of $${S_1}^2 + {S_2}^2 + {S_3}^2 + ....... + {S^2}_{2n - 1}$$
3
IIT-JEE 1987
Subjective
+3
-0
Solve for x the following equation:

$${\log _{(2x + 3)}}(6{x^2} + 23x + 21) = 4 - {\log _{(3x + 7)}}(4{x^2} + 12x + 9)\,$$

4
IIT-JEE 1985
Subjective
+5
-0
Find the sum of the series : $$$\sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}\,{}^n{C_r}\left[ {{1 \over {{2^r}}} + {{{3^r}} \over {{2^{2r}}}} + {{{7^r}} \over {{2^{3r}}}} + {{{{15}^r}} \over {{2^{4r}}}}..........up\,\,to\,\,m\,\,terms} \right]} $$$
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12