Let $${a_1}$$, $${a_2}$$,.....,$${a_n}$$ be positive real numbers in geometric progression. For each n, let $${A_n}$$, $${G_n}$$, $${H_n}$$ be respectively, the arithmetic mean , geometric mean, and harmonic mean of $${a_1}$$,$${a_2}$$......,$${a_n}$$. Find an expression for the geometric mean of $${G_1}$$,$${G_2}$$,.....,$${G_n}$$ in terms of $${A_1}$$,$${A_2}$$,.....,$${A_n}$$,$${H_n}$$,$${H_1}$$,$${H_2}$$,........,$${H_n}$$.
The fourth power of the common difference of an arithmatic progression with integer entries is added to the product of any four consecutive terms of it. Prove that the resulting sum is the square of an integer.
Answer
solve it
3
IIT-JEE 1999
Subjective
Let a, b, c, d be real numbers in G.P. If u, v, w, satisfy the system of equations
u + 2v + 3w = 6
4u + 5v + 6w = 12
6u + 9v = 4
then show that the roots of the equation $$\left( {{1 \over u} + {1 \over v} + {1 \over w}} \right){x^2}$$
$$ + [{(b - c)^2} + {(c - a)^2} + {(d - b)^2}]x + u + v + w = 0$$ and $$20{x^2} + 10{(a - d)^2}x - 9 = 0$$ are reciprocals of each other.
Answer
solve it
4
IIT-JEE 1996
Subjective
The real numbers $${x_1}$$, $${x_2}$$, $${x_3}$$ satisfying the equation $${x^3} - {x^2} + \beta x + \gamma = 0$$ are in AP. Find the intervals in which $$\beta \,\,and\,\gamma $$ lie.