1
IIT-JEE 2002
Subjective
+5
-0
Let a, b be positive real numbers. If a, $${{A_1},{A_2}}$$, b are in arithmetic progression, a, $${{G_1},{G_2}}$$, b are in geometric progression and a, $${{H_1},{H_2}}$$, b are in harmonic progression, show that $$\,{{{G_1},{G_2}} \over {{H_1},{H_2}}} = {{{A_1} + {A_2}} \over {{H_1} + {H_2}}} = {{(2a + b)\,(a + 2b)} \over {9ab}}$$.
2
IIT-JEE 2001
Subjective
+5
-0
Let $${a_1}$$, $${a_2}$$,.....,$${a_n}$$ be positive real numbers in geometric progression. For each n, let $${A_n}$$, $${G_n}$$, $${H_n}$$ be respectively, the arithmetic mean , geometric mean, and harmonic mean of $${a_1}$$,$${a_2}$$......,$${a_n}$$. Find an expression for the geometric mean of $${G_1}$$,$${G_2}$$,.....,$${G_n}$$ in terms of $${A_1}$$,$${A_2}$$,.....,$${A_n}$$,$${H_n}$$,$${H_1}$$,$${H_2}$$,........,$${H_n}$$.
3
IIT-JEE 2000
Subjective
+4
-0
The fourth power of the common difference of an arithmatic progression with integer entries is added to the product of any four consecutive terms of it. Prove that the resulting sum is the square of an integer.
4
IIT-JEE 1999
Subjective
+10
-0
Let a, b, c, d be real numbers in G.P. If u, v, w, satisfy the system of equations
u + 2v + 3w = 6
4u + 5v + 6w = 12
6u + 9v = 4

then show that the roots of the equation $$\left( {{1 \over u} + {1 \over v} + {1 \over w}} \right){x^2}$$
$$+ [{(b - c)^2} + {(c - a)^2} + {(d - b)^2}]x + u + v + w = 0$$ and $$20{x^2} + 10{(a - d)^2}x - 9 = 0$$ are reciprocals of each other.

EXAM MAP
Medical
NEET