1
IIT-JEE 2006
Subjective
+6
-0
If $${a_n} = {3 \over 4} - {\left( {{3 \over 4}} \right)^2} + {\left( {{3 \over 4}} \right)^3} + ....{( - 1)^{n - 1}}{\left( {{3 \over 4}} \right)^n}\,\,and\,\,{b_n} = 1 - {a_n},$$, then find the least natural number $${n_0}$$ such that $${b_n}\,\, > \,\,{a_n}\,\forall \,n\,\, \ge \,\,{n_0}$$.
2
IIT-JEE 2003
Subjective
+4
-0
If a, b, c are in A.P., $${a^2}$$, $${b^2}$$, $${c^2}$$ are in H.P., then prove that either a = b = c or a, b, $${ - {c \over 2}}$$ form a G.P.
3
IIT-JEE 2002
Subjective
+5
-0
Let a, b be positive real numbers. If a, $${{A_1},{A_2}}$$, b are in arithmetic progression, a, $${{G_1},{G_2}}$$, b are in geometric progression and a, $${{H_1},{H_2}}$$, b are in harmonic progression, show that $$\,{{{G_1},{G_2}} \over {{H_1},{H_2}}} = {{{A_1} + {A_2}} \over {{H_1} + {H_2}}} = {{(2a + b)\,(a + 2b)} \over {9ab}}$$.
4
IIT-JEE 2001
Subjective
+5
-0
Let $${a_1}$$, $${a_2}$$,.....,$${a_n}$$ be positive real numbers in geometric progression. For each n, let $${A_n}$$, $${G_n}$$, $${H_n}$$ be respectively, the arithmetic mean , geometric mean, and harmonic mean of $${a_1}$$,$${a_2}$$......,$${a_n}$$. Find an expression for the geometric mean of $${G_1}$$,$${G_2}$$,.....,$${G_n}$$ in terms of $${A_1}$$,$${A_2}$$,.....,$${A_n}$$,$${H_n}$$,$${H_1}$$,$${H_2}$$,........,$${H_n}$$.
EXAM MAP
Medical
NEET