1
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

If P is a 3 $$\times$$ 3 matrix such that PT = 2P + I, where PT is the transpose of P and I is the 3 $$\times$$ 3 identity matrix, then there exists a column matrix $$X = \left[ {\matrix{ x \cr y \cr z \cr } } \right] \ne \left[ {\matrix{ 0 \cr 0 \cr 0 \cr } } \right]$$ such that

A
$$PX = \left[ {\matrix{ 0 \cr 0 \cr 0 \cr } } \right]$$
B
PX = X
C
PX = 2X
D
PX = $$-$$X
2
IIT-JEE 2012 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let $$P = [{a_{ij}}]$$ be a 3 $$\times$$ 3 matrix and let $$Q = [{b_{ij}}]$$, where $${b_{ij}} = {2^{i + j}}{a_{ij}}$$ for $$1 \le i,j \le 3$$. If the determinant of P is 2, then the determinant of the matrix Q is

A
210
B
211
C
212
D
213
3
IIT-JEE 2011 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let a, b and c be three real numbers satisfying

$$[\matrix{ a & b & c \cr } ]\left[ {\matrix{ 1 & 9 & 7 \cr 8 & 2 & 7 \cr 7 & 3 & 7 \cr } } \right] = [\matrix{ 0 & 0 & 0 \cr } ]$$ .......(E)

If the point P(a, b, c), with reference to (E), lies on the plane 2x + y + z = 1, then the value of 7a + b + c is

A
0
B
12
C
7
D
6
4
IIT-JEE 2011 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let a, b and c be three real numbers satisfying

$$[\matrix{ a & b & c \cr } ]\left[ {\matrix{ 1 & 9 & 7 \cr 8 & 2 & 7 \cr 7 & 3 & 7 \cr } } \right] = [\matrix{ 0 & 0 & 0 \cr } ]$$ ........(E)

Let $$\omega$$ be a solution of $${x^3} - 1 = 0$$ with $${\mathop{\rm Im}\nolimits} (\omega ) > 0$$. If a = 2 with b and c satisfying (E), then the value of $${3 \over {{\omega ^a}}} + {1 \over {{\omega ^b}}} + {3 \over {{\omega ^c}}}$$ is equal to

A
$$-$$2
B
2
C
3
D
$$-$$3
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12