Let a, b and c be three real numbers satisfying

$$[\matrix{ a & b & c \cr } ]\left[ {\matrix{ 1 & 9 & 7 \cr 8 & 2 & 7 \cr 7 & 3 & 7 \cr } } \right] = [\matrix{ 0 & 0 & 0 \cr } ]$$ ........ (E)

Let b = 6, with a and c satisfying (E). If $$\alpha$$ and $$\beta$$ are the roots of the quadratic equation ax^{2} + bx + c = 0, then $$\sum\limits_{n = 0}^\infty {{{\left( {{1 \over \alpha } + {1 \over \beta }} \right)}^n}} $$ is

Let $$\omega$$ $$\ne$$ 1 be a cube root of unity and S be the set of all non-singular matrices of the form $$\left[ {\matrix{
1 & a & b \cr
\omega & 1 & c \cr
{{\omega ^2}} & \omega & 1 \cr
} } \right]$$, where each of a, b, and c is either $$\omega$$ or $$\omega$$^{2}. Then the number of distinct matrices in the set S is

Let A be the set of all 3 $$\times$$ 3 symmetric matrices all of whose entries are either 0 or 1. Five of these entries are 1 and four of them are 0.

The number of matrices in A is

Let A be the set of all 3 $$\times$$ 3 symmetric matrices all of whose entries are either 0 or 1. Five of these entries are 1 and four of them are 0.

The number of matrices A in A for which the system of linear equations $$A\left[ {\matrix{ x \cr y \cr z \cr } } \right] = \left[ {\matrix{ 1 \cr 0 \cr 0 \cr } } \right]$$ has a unique solution, is