1
JEE Advanced 2022 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
If $M=\left(\begin{array}{rr}\frac{5}{2} & \frac{3}{2} \\ -\frac{3}{2} & -\frac{1}{2}\end{array}\right)$, then which of the

following matrices is equal to $M^{2022} ?$
A
$\left(\begin{array}{rr}3034 & 3033 \\ -3033 & -3032\end{array}\right)$
B
$\left(\begin{array}{ll}3034 & -3033 \\ 3033 & -3032\end{array}\right)$
C
$\left(\begin{array}{rr}3033 & 3032 \\ -3032 & -3031\end{array}\right)$
D
$\left(\begin{array}{rr}3032 & 3031 \\ -3031 & -3030\end{array}\right)$
2
JEE Advanced 2022 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Let $$p, q, r$$ be nonzero real numbers that are, respectively, the $$10^{\text {th }}, 100^{\text {th }}$$ and $$1000^{\text {th }}$$ terms of a harmonic progression. Consider the system of linear equations

$$$ \begin{gathered} x+y+z=1 \\ 10 x+100 y+1000 z=0 \\ q r x+p r y+p q z=0 \end{gathered} $$$

List-I List-II
(I) If $$\frac{q}{r}=10$$, then the system of linear equations has (P) $$x=0, \quad y=\frac{10}{9}, z=-\frac{1}{9}$$ as a solution
(II) If $$\frac{p}{r} \neq 100$$, then the system of linear equations has (Q) $$x=\frac{10}{9}, y=-\frac{1}{9}, z=0$$ as a solution
(III) If $$\frac{p}{q} \neq 10$$, then the system of linear equations has (R) infinitely many solutions
(IV) If $$\frac{p}{q}=10$$, then the system of linear equations has (S) no solution
(T) at least one solution

The correct option is:

A
(I) $$\rightarrow$$ (T); (II) $$\rightarrow$$ (R); (III) $$\rightarrow$$ (S); (IV) $$\rightarrow$$ (T)
B
(I) $$\rightarrow$$ (Q); (II) $$\rightarrow$$ (S); (III) $$\rightarrow$$ (S); (IV) $$\rightarrow$$ (R)
C
(I) $$\rightarrow(\mathrm{Q})$$; (II) $$\rightarrow$$ (R); (III) $$\rightarrow(\mathrm{P})$$; (IV) $$\rightarrow$$ (R)
D
(I) $$\rightarrow$$ (T); (II) $$\rightarrow$$ (S); (III) $$\rightarrow$$ (P); (IV) $$\rightarrow$$ (T)
3
JEE Advanced 2019 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $$M = \left[ {\matrix{ {{{\sin }^4}\theta } \cr {1 + {{\cos }^2}\theta } \cr } \matrix{ { - 1 - {{\sin }^2}\theta } \cr {{{\cos }^4}\theta } \cr } } \right] = \alpha I + \beta {M^{ - 1}}$$,

where $$\alpha $$ = $$\alpha $$($$\theta $$) and $$\beta $$ = $$\beta $$($$\theta $$) are real numbers, and I is the 2 $$ \times $$ 2 identity matrix. If $$\alpha $$* is the minimum of the set {$$\alpha $$($$\theta $$) : $$\theta $$ $$ \in $$ [0, 2$$\pi $$)} and {$$\beta $$($$\theta $$) : $$\theta $$ $$ \in $$ [0, 2$$\pi $$)}, then the value of $$\alpha $$* + $$\beta $$* is
A
$$ - {{17} \over {16}}$$
B
$$ - {{31} \over {16}}$$
C
$$ - {{37} \over {16}}$$
D
$$ - {{29} \over {16}}$$
4
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
How many 3 $$ \times $$ 3 matrices M with entries from {0, 1, 2} are there, for which the sum of the diagonal entries of MTM is 5?
A
198
B
162
C
126
D
135
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12