Let $$P = \left[ {\matrix{ 1 & 0 & 0 \cr 4 & 1 & 0 \cr {16} & 4 & 1 \cr } } \right]$$ and I be the identity matrix of order 3. If $$Q = [{q_{ij}}]$$ is a matrix such that $${P^{50}} - Q = I$$ and $${{{q_{31}} + {q_{32}}} \over {{q_{21}}}}$$ equals
If P is a 3 $$\times$$ 3 matrix such that PT = 2P + I, where PT is the transpose of P and I is the 3 $$\times$$ 3 identity matrix, then there exists a column matrix $$X = \left[ {\matrix{ x \cr y \cr z \cr } } \right] \ne \left[ {\matrix{ 0 \cr 0 \cr 0 \cr } } \right]$$ such that
Let $$P = [{a_{ij}}]$$ be a 3 $$\times$$ 3 matrix and let $$Q = [{b_{ij}}]$$, where $${b_{ij}} = {2^{i + j}}{a_{ij}}$$ for $$1 \le i,j \le 3$$. If the determinant of P is 2, then the determinant of the matrix Q is
Let a, b and c be three real numbers satisfying
$$[\matrix{ a & b & c \cr } ]\left[ {\matrix{ 1 & 9 & 7 \cr 8 & 2 & 7 \cr 7 & 3 & 7 \cr } } \right] = [\matrix{ 0 & 0 & 0 \cr } ]$$ .......(E)
If the point P(a, b, c), with reference to (E), lies on the plane 2x + y + z = 1, then the value of 7a + b + c is