1
JEE Advanced 2022 Paper 1 Online
+3
-1

Let $$p, q, r$$ be nonzero real numbers that are, respectively, the $$10^{\text {th }}, 100^{\text {th }}$$ and $$1000^{\text {th }}$$ terms of a harmonic progression. Consider the system of linear equations

$$\begin{gathered} x+y+z=1 \\ 10 x+100 y+1000 z=0 \\ q r x+p r y+p q z=0 \end{gathered}$$\$

List-I List-II
(I) If $$\frac{q}{r}=10$$, then the system of linear equations has (P) $$x=0, \quad y=\frac{10}{9}, z=-\frac{1}{9}$$ as a solution
(II) If $$\frac{p}{r} \neq 100$$, then the system of linear equations has (Q) $$x=\frac{10}{9}, y=-\frac{1}{9}, z=0$$ as a solution
(III) If $$\frac{p}{q} \neq 10$$, then the system of linear equations has (R) infinitely many solutions
(IV) If $$\frac{p}{q}=10$$, then the system of linear equations has (S) no solution
(T) at least one solution

The correct option is:

A
(I) $$\rightarrow$$ (T); (II) $$\rightarrow$$ (R); (III) $$\rightarrow$$ (S); (IV) $$\rightarrow$$ (T)
B
(I) $$\rightarrow$$ (Q); (II) $$\rightarrow$$ (S); (III) $$\rightarrow$$ (S); (IV) $$\rightarrow$$ (R)
C
(I) $$\rightarrow(\mathrm{Q})$$; (II) $$\rightarrow$$ (R); (III) $$\rightarrow(\mathrm{P})$$; (IV) $$\rightarrow$$ (R)
D
(I) $$\rightarrow$$ (T); (II) $$\rightarrow$$ (S); (III) $$\rightarrow$$ (P); (IV) $$\rightarrow$$ (T)
2
JEE Advanced 2019 Paper 1 Offline
+3
-1
Let $$M = \left[ {\matrix{ {{{\sin }^4}\theta } \cr {1 + {{\cos }^2}\theta } \cr } \matrix{ { - 1 - {{\sin }^2}\theta } \cr {{{\cos }^4}\theta } \cr } } \right] = \alpha I + \beta {M^{ - 1}}$$,

where $$\alpha$$ = $$\alpha$$($$\theta$$) and $$\beta$$ = $$\beta$$($$\theta$$) are real numbers, and I is the 2 $$\times$$ 2 identity matrix. If $$\alpha$$* is the minimum of the set {$$\alpha$$($$\theta$$) : $$\theta$$ $$\in$$ [0, 2$$\pi$$)} and {$$\beta$$($$\theta$$) : $$\theta$$ $$\in$$ [0, 2$$\pi$$)}, then the value of $$\alpha$$* + $$\beta$$* is
A
$$- {{17} \over {16}}$$
B
$$- {{31} \over {16}}$$
C
$$- {{37} \over {16}}$$
D
$$- {{29} \over {16}}$$
3
JEE Advanced 2017 Paper 2 Offline
+3
-1
How many 3 $$\times$$ 3 matrices M with entries from {0, 1, 2} are there, for which the sum of the diagonal entries of MTM is 5?
A
198
B
162
C
126
D
135
4
JEE Advanced 2016 Paper 2 Offline
+3
-1

Let $$P = \left[ {\matrix{ 1 & 0 & 0 \cr 4 & 1 & 0 \cr {16} & 4 & 1 \cr } } \right]$$ and I be the identity matrix of order 3. If $$Q = [{q_{ij}}]$$ is a matrix such that $${P^{50}} - Q = I$$ and $${{{q_{31}} + {q_{32}}} \over {{q_{21}}}}$$ equals

A
52
B
103
C
201
D
205
EXAM MAP
Medical
NEET