NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

IIT-JEE 1981

Subjective
Let $$y = {e^{x\,\sin \,{x^3}}} + {\left( {\tan x} \right)^x}$$. Find $${{dy} \over {dx}}$$

Answer

$${e^{x\,\sin {x^3}}}\left[ {\sin {x^3} + 3{x^3}\cos {x^3}} \right] + {\left( {\tan x} \right)^x}\left[ {{{2x} \over {\sin x}} + \log \,\tan x} \right]$$
2

IIT-JEE 1980

Subjective
Given $$y = {{5x} \over {3\sqrt {{{\left( {1 - x} \right)}^2}} }} + {\cos ^2}\left( {2x + 1} \right)$$; Find $${{dy} \over {dx}}$$.

Answer

$${{dy} \over {dx}} = \left\{ {\matrix{ {{5 \over 3}.{1 \over {{{\left( {1 - x} \right)}^2}}} - 2\,\sin \left( {4x + 2} \right),} & {x < 1} \cr { - {5 \over 3}.{1 \over {{{\left( {x - 1} \right)}^2}}} - 2\,\sin \left( {4x + 2} \right),} & {x > 1} \cr } } \right.$$
3

IIT-JEE 1979

Subjective
Find the derivative of $$$f\left( x \right) = \left\{ {\matrix{ {{{x - 1} \over {2{x^2} - 7x + 5}}} & {when\,\,x \ne 1} \cr { - {1 \over 3}} & {when\,\,x = 1} \cr } } \right.$$$
at $$x=1$$

Answer

$${ - {2 \over 9}}$$
4

IIT-JEE 1978

Subjective
Find the derivative of $$\sin \left( {{x^2} + 1} \right)$$ with respect to $$x$$ first principle.

Answer

$$2x\,\cos \left( {{x^2} + 1} \right)$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12