1

IIT-JEE 1982

Subjective
Let $$f$$ be a twice differentiable function such that

$$f''\left( x \right) = - f\left( x \right),$$ and $$f'\left( x \right) = g\left( x \right),h\left( x \right) = {\left[ {f\left( x \right)} \right]^2} + {\left[ {g\left( x \right)} \right]^2}$$

Find $$h\left( {10} \right)$$ if $$h(5)=11$$

Answer

$$11$$
2

IIT-JEE 1981

Subjective
Let $$y = {e^{x\,\sin \,{x^3}}} + {\left( {\tan x} \right)^x}$$. Find $${{dy} \over {dx}}$$

Answer

$${e^{x\,\sin {x^3}}}\left[ {\sin {x^3} + 3{x^3}\cos {x^3}} \right] + {\left( {\tan x} \right)^x}\left[ {{{2x} \over {\sin x}} + \log \,\tan x} \right]$$
3

IIT-JEE 1980

Subjective
Given $$y = {{5x} \over {3\sqrt {{{\left( {1 - x} \right)}^2}} }} + {\cos ^2}\left( {2x + 1} \right)$$; Find $${{dy} \over {dx}}$$.

Answer

$${{dy} \over {dx}} = \left\{ {\matrix{ {{5 \over 3}.{1 \over {{{\left( {1 - x} \right)}^2}}} - 2\,\sin \left( {4x + 2} \right),} & {x < 1} \cr { - {5 \over 3}.{1 \over {{{\left( {x - 1} \right)}^2}}} - 2\,\sin \left( {4x + 2} \right),} & {x > 1} \cr } } \right.$$
4

IIT-JEE 1979

Subjective
Find the derivative of $$$f\left( x \right) = \left\{ {\matrix{ {{{x - 1} \over {2{x^2} - 7x + 5}}} & {when\,\,x \ne 1} \cr { - {1 \over 3}} & {when\,\,x = 1} \cr } } \right.$$$
at $$x=1$$

Answer

$${ - {2 \over 9}}$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12