NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

IIT-JEE 1984

Subjective
If $$\alpha $$ be a repeated root of a quadratic equation $$f(x)=0$$ and $$A(x), B(x)$$ and $$C(x)$$ be polynomials of degree $$3$$, $$4$$ and $$5$$ respectively,
then show that $$\left| {\matrix{ {A\left( x \right)} & {B\left( x \right)} & {C\left( x \right)} \cr {A\left( \alpha \right)} & {B\left( \alpha \right)} & {C\left( \alpha \right)} \cr {A'\left( \alpha \right)} & {B'\left( \alpha \right)} & {C'\left( \alpha \right)} \cr } } \right|$$ is
divisible by $$f(x)$$, where prime denotes the derivatives.

Answer

Solve it.
2

IIT-JEE 1982

Subjective
Let $$f$$ be a twice differentiable function such that

$$f''\left( x \right) = - f\left( x \right),$$ and $$f'\left( x \right) = g\left( x \right),h\left( x \right) = {\left[ {f\left( x \right)} \right]^2} + {\left[ {g\left( x \right)} \right]^2}$$

Find $$h\left( {10} \right)$$ if $$h(5)=11$$

Answer

$$11$$
3

IIT-JEE 1981

Subjective
Let $$y = {e^{x\,\sin \,{x^3}}} + {\left( {\tan x} \right)^x}$$. Find $${{dy} \over {dx}}$$

Answer

$${e^{x\,\sin {x^3}}}\left[ {\sin {x^3} + 3{x^3}\cos {x^3}} \right] + {\left( {\tan x} \right)^x}\left[ {{{2x} \over {\sin x}} + \log \,\tan x} \right]$$
4

IIT-JEE 1980

Subjective
Given $$y = {{5x} \over {3\sqrt {{{\left( {1 - x} \right)}^2}} }} + {\cos ^2}\left( {2x + 1} \right)$$; Find $${{dy} \over {dx}}$$.

Answer

$${{dy} \over {dx}} = \left\{ {\matrix{ {{5 \over 3}.{1 \over {{{\left( {1 - x} \right)}^2}}} - 2\,\sin \left( {4x + 2} \right),} & {x < 1} \cr { - {5 \over 3}.{1 \over {{{\left( {x - 1} \right)}^2}}} - 2\,\sin \left( {4x + 2} \right),} & {x > 1} \cr } } \right.$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12