1
IIT-JEE 1984
Subjective
+4
-0
If $$\alpha$$ be a repeated root of a quadratic equation $$f(x)=0$$ and $$A(x), B(x)$$ and $$C(x)$$ be polynomials of degree $$3$$, $$4$$ and $$5$$ respectively,
then show that $$\left| {\matrix{ {A\left( x \right)} & {B\left( x \right)} & {C\left( x \right)} \cr {A\left( \alpha \right)} & {B\left( \alpha \right)} & {C\left( \alpha \right)} \cr {A'\left( \alpha \right)} & {B'\left( \alpha \right)} & {C'\left( \alpha \right)} \cr } } \right|$$ is
divisible by $$f(x)$$, where prime denotes the derivatives.
2
IIT-JEE 1982
Subjective
+3
-0
Let $$f$$ be a twice differentiable function such that

$$f''\left( x \right) = - f\left( x \right),$$ and $$f'\left( x \right) = g\left( x \right),h\left( x \right) = {\left[ {f\left( x \right)} \right]^2} + {\left[ {g\left( x \right)} \right]^2}$$

Find $$h\left( {10} \right)$$ if $$h(5)=11$$

3
IIT-JEE 1981
Subjective
+2
-0
Let $$y = {e^{x\,\sin \,{x^3}}} + {\left( {\tan x} \right)^x}$$. Find $${{dy} \over {dx}}$$
4
IIT-JEE 1980
Subjective
+4
-0
Given $$y = {{5x} \over {3\sqrt {{{\left( {1 - x} \right)}^2}} }} + {\cos ^2}\left( {2x + 1} \right)$$; Find $${{dy} \over {dx}}$$.
EXAM MAP
Medical
NEET