1

### IIT-JEE 1991

Subjective
Find $${{{dy} \over {dx}}}$$ at $$x=-1$$, when
$${\left( {\sin y} \right)^{\sin \left( {{\pi \over 2}x} \right)}} + {{\sqrt 3 } \over 2}{\sec ^{ - 1}}\left( {2x} \right) + {2^x}\tan \left( {In\left( {x + 2} \right)} \right) = 0$$

$$0$$
2

### IIT-JEE 1989

Subjective
If $$x = \sec \theta - \cos \theta$$ and $$y = {\sec ^n}\theta - {\cos ^n}\theta$$, then show
that $$\left( {{x^2} + 4} \right){\left( {{{dy} \over {dx}}} \right)^2} = {n^2}\left( {{y^2} + 4} \right)$$

Solve it.
3

### IIT-JEE 1984

Subjective
If $$\alpha$$ be a repeated root of a quadratic equation $$f(x)=0$$ and $$A(x), B(x)$$ and $$C(x)$$ be polynomials of degree $$3$$, $$4$$ and $$5$$ respectively,
then show that $$\left| {\matrix{ {A\left( x \right)} & {B\left( x \right)} & {C\left( x \right)} \cr {A\left( \alpha \right)} & {B\left( \alpha \right)} & {C\left( \alpha \right)} \cr {A'\left( \alpha \right)} & {B'\left( \alpha \right)} & {C'\left( \alpha \right)} \cr } } \right|$$ is
divisible by $$f(x)$$, where prime denotes the derivatives.

Solve it.
4

### IIT-JEE 1982

Subjective
Let $$f$$ be a twice differentiable function such that

$$f''\left( x \right) = - f\left( x \right),$$ and $$f'\left( x \right) = g\left( x \right),h\left( x \right) = {\left[ {f\left( x \right)} \right]^2} + {\left[ {g\left( x \right)} \right]^2}$$

Find $$h\left( {10} \right)$$ if $$h(5)=11$$

$$11$$

### Joint Entrance Examination

JEE Main JEE Advanced WB JEE

### Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

NEET

Class 12