1
IIT-JEE 1998
Subjective
+8
-0
If$$\,\,\,$$ $$y = {{a{x^2}} \over {\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + {{bx} \over {\left( {x - b} \right)\left( {x - c} \right)}} + {c \over {x - c}} + 1$$,
prove that $${{y'} \over y} = {1 \over x}\left( {{a \over {a - x}} + {b \over {b - x}} + {c \over {c - x}}} \right)$$.
prove that $${{y'} \over y} = {1 \over x}\left( {{a \over {a - x}} + {b \over {b - x}} + {c \over {c - x}}} \right)$$.
2
IIT-JEE 1991
Subjective
+4
-0
Find $${{{dy} \over {dx}}}$$ at $$x=-1$$, when
$${\left( {\sin y} \right)^{\sin \left( {{\pi \over 2}x} \right)}} + {{\sqrt 3 } \over 2}{\sec ^{ - 1}}\left( {2x} \right) + {2^x}\tan \left( {In\left( {x + 2} \right)} \right) = 0$$
$${\left( {\sin y} \right)^{\sin \left( {{\pi \over 2}x} \right)}} + {{\sqrt 3 } \over 2}{\sec ^{ - 1}}\left( {2x} \right) + {2^x}\tan \left( {In\left( {x + 2} \right)} \right) = 0$$
3
IIT-JEE 1989
Subjective
+2
-0
If $$x = \sec \theta - \cos \theta $$ and $$y = {\sec ^n}\theta - {\cos ^n}\theta $$, then show
that $$\left( {{x^2} + 4} \right){\left( {{{dy} \over {dx}}} \right)^2} = {n^2}\left( {{y^2} + 4} \right)$$
that $$\left( {{x^2} + 4} \right){\left( {{{dy} \over {dx}}} \right)^2} = {n^2}\left( {{y^2} + 4} \right)$$
4
IIT-JEE 1984
Subjective
+4
-0
If $$\alpha $$ be a repeated root of a quadratic equation $$f(x)=0$$ and $$A(x), B(x)$$ and $$C(x)$$ be polynomials of degree $$3$$, $$4$$ and $$5$$ respectively,
then show that $$\left| {\matrix{ {A\left( x \right)} & {B\left( x \right)} & {C\left( x \right)} \cr {A\left( \alpha \right)} & {B\left( \alpha \right)} & {C\left( \alpha \right)} \cr {A'\left( \alpha \right)} & {B'\left( \alpha \right)} & {C'\left( \alpha \right)} \cr } } \right|$$ is
divisible by $$f(x)$$, where prime denotes the derivatives.
then show that $$\left| {\matrix{ {A\left( x \right)} & {B\left( x \right)} & {C\left( x \right)} \cr {A\left( \alpha \right)} & {B\left( \alpha \right)} & {C\left( \alpha \right)} \cr {A'\left( \alpha \right)} & {B'\left( \alpha \right)} & {C'\left( \alpha \right)} \cr } } \right|$$ is
divisible by $$f(x)$$, where prime denotes the derivatives.
Questions Asked from Differentiation (Subjective)
Number in Brackets after Paper Indicates No. of Questions
JEE Advanced Subjects
Physics
Mechanics
Units & MeasurementsMotionLaws of MotionWork Power & EnergyImpulse & MomentumRotational MotionProperties of MatterHeat and ThermodynamicsSimple Harmonic MotionWavesGravitation
Electricity
ElectrostaticsCurrent ElectricityCapacitorMagnetismElectromagnetic InductionAlternating CurrentElectromagnetic Waves
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of ChemistryStructure of AtomRedox ReactionsGaseous StateChemical EquilibriumIonic EquilibriumSolutionsThermodynamicsChemical Kinetics and Nuclear ChemistryElectrochemistrySolid StateSurface Chemistry
Inorganic Chemistry
Periodic Table & PeriodicityChemical Bonding & Molecular StructureIsolation of ElementsHydrogens-Block Elementsp-Block Elementsd and f Block ElementsCoordination CompoundsSalt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and InequalitiesSequences and SeriesMathematical Induction and Binomial TheoremMatrices and DeterminantsPermutations and CombinationsProbabilityVector Algebra3D GeometryStatisticsComplex Numbers
Trigonometry
Coordinate Geometry
Calculus