1
IIT-JEE 2000
+2
-0.5
If $${x^2} + {y^2} = 1$$ then
A
$$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B
$$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C
$$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D
$$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
2
IIT-JEE 1994
+2
-0.5
If $$y = {\left( {\sin x} \right)^{\tan x}},$$ then $${{dy} \over {dx}}$$ is equal to
A
$${\left( {\sin x} \right)^{\tan x}}\left( {1 + {{\sec }^2}x\,\log \,\sin \,x} \right)$$
B
$$\tan x{\left( {\sin x} \right)^{\tan x - 1}}.\cos x$$
C
$${\left( {\sin x} \right)^{\tan x}}{\sec ^2}x\,\log \,\sin \,x$$
D
$$\tan x{\left( {\sin x} \right)^{\tan x - 1}}$$
3
IIT-JEE 1990
+2
-0.5
Let $$f(x)$$ be a quadratic expression which is positive for all the real values of $$x$$. If $$g(x)=f(x)+f''(x)$$, then for any real $$x$$,
A
$$g(x)<0$$
B
$$g(x)>0$$
C
$$g(x)=0$$
D
$$g\left( x \right) \ge 0$$
4
IIT-JEE 1988
+2
-0.5
If $${y^2} = P\left( x \right)$$, a polynomial of degree $$3$$, then $$2{d \over {dx}}\left( {{y^3}{{{d^2}y} \over {d{x^2}}}} \right)$$ equals
A
$$P''\left( x \right) + P\left( x \right)$$
B
$$P'\left( x \right)P''\left( x \right)$$
C
$$P\left( x \right)P''\left( x \right)$$
D
a constant
EXAM MAP
Medical
NEET