1

IIT-JEE 2007

MCQ (Single Correct Answer)
Let $$\,\,\,$$$$f\left( x \right) = 2 + \cos x$$ for all real $$X$$.

STATEMENT - 1: for eachreal $$t$$, there exists a point $$c$$ in $$\left[ {t,t + \pi } \right]$$ such that $$f'\left( c \right) = 0$$ because
STATEMENT - 2: $$f\left( t \right) = f\left( {t + 2\pi } \right)$$ for each real $$t$$.

A
Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
B
Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
C
Statement-1 is True, Statement-2 is False
D
Statement-1 is False, Statement-2 is True.
2

IIT-JEE 2007

MCQ (Single Correct Answer)
$${{{d^2}x} \over {d{y^2}}}$$ equals
A
$${\left( {{{{d^2}y} \over {d{x^2}}}} \right)^{ - 1}}$$
B
$$ - {\left( {{{{d^2}y} \over {d{x^2}}}} \right)^{ - 1}}{\left( {{{dy} \over {dx}}} \right)^{ - 3}}$$
C
$$\left( {{{{d^2}y} \over {d{x^2}}}} \right){\left( {{{dy} \over {dx}}} \right)^{ - 2}}$$
D
$$ - \left( {{{{d^2}y} \over {d{x^2}}}} \right){\left( {{{dy} \over {dx}}} \right)^{ - 3}}$$
3

IIT-JEE 2005 Screening

MCQ (Single Correct Answer)
If $$f(x)$$ is a twice differentiable function and given that $$f\left( 1 \right) = 1;f\left( 2 \right) = 4,f\left( 3 \right) = 9$$, then
A
$$f''\left( x \right) = 2$$ for $$\forall x \in \left( {1,3} \right)$$
B
$$f''\left( x \right) = f'\left( x \right) = 5$$ for some $$x \in \left( {2,3} \right)$$
C
$$f''\left( x \right) = 3$$ for $$\forall x \in \left( {2,3} \right)$$
D
$$f''\left( x \right) = 2$$ for some $$x \in \left( {1,3} \right)$$
4

IIT-JEE 2004 Screening

MCQ (Single Correct Answer)
If $$y$$ is a function of $$x$$ and log $$(x+y)-2xy=0$$, then the value of $$y'(0)$$ is equal to
A
$$1$$
B
$$-1$$
C
$$2$$
D
$$0$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12