1

IIT-JEE 2001 Screening

MCQ (Single Correct Answer)
Let $$f:\left( {0,\infty } \right) \to R$$ and $$F\left( x \right) = \int\limits_0^x {f\left( t \right)dt.} $$ If $$F\left( {{x^2}} \right) = {x^2}\left( {1 + x} \right)$$, then $$f(4)$$ equals
A
$$5/4$$
B
$$7$$
C
$$4$$
D
$$2$$
2

IIT-JEE 2000

MCQ (Single Correct Answer)
If $${x^2} + {y^2} = 1$$ then
A
$$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B
$$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C
$$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D
$$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
3

IIT-JEE 1994

MCQ (Single Correct Answer)
If $$y = {\left( {\sin x} \right)^{\tan x}},$$ then $${{dy} \over {dx}}$$ is equal to
A
$${\left( {\sin x} \right)^{\tan x}}\left( {1 + {{\sec }^2}x\,\log \,\sin \,x} \right)$$
B
$$\tan x{\left( {\sin x} \right)^{\tan x - 1}}.\cos x$$
C
$${\left( {\sin x} \right)^{\tan x}}{\sec ^2}x\,\log \,\sin \,x$$
D
$$\tan x{\left( {\sin x} \right)^{\tan x - 1}}$$
4

IIT-JEE 1990

MCQ (Single Correct Answer)
Let $$f(x)$$ be a quadratic expression which is positive for all the real values of $$x$$. If $$g(x)=f(x)+f''(x)$$, then for any real $$x$$,
A
$$g(x)<0$$
B
$$g(x)>0$$
C
$$g(x)=0$$
D
$$g\left( x \right) \ge 0$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12