1
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

Let $$g(x) = \log f(x)$$, where $$f(x)$$ is a twice differentiable positive function on (0, $$\infty$$) such that $$f(x + 1) = xf(x)$$. Then for N = 1, 2, 3, ..., $$g''\left( {N + {1 \over 2}} \right) - g''\left( {{1 \over 2}} \right) = $$

A
$$ - 4\left\{ {1 + {1 \over 9} + {1 \over {25}} + ....... + {1 \over {{{\left( {2N - 1} \right)}^2}}}} \right\}$$
B
$$4\left\{ {1 + {1 \over 9} + {1 \over {25}} + ....... + {1 \over {{{\left( {2N - 1} \right)}^2}}}} \right\}$$
C
$$ - 4\left\{ {1 + {1 \over 9} + {1 \over {25}} + ....... + {1 \over {{{\left( {2N + 1} \right)}^2}}}} \right\}$$
D
$$4\left\{ {1 + {1 \over 9} + {1 \over {25}} + ....... + {1 \over {{{\left( {2N + 1} \right)}^2}}}} \right\}$$
2
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Consider the function $$f:\left( { - \infty ,\infty } \right) \to \left( { - \infty ,\infty } \right)$$ defined by

$$f\left( x \right) = {{{x^2} - ax + 1} \over {{x^2} + ax + 1}},0 < a < 2.$$

Which of the following is true?

A
$${\left( {2 + a} \right)^2}f''\left( 1 \right) + {\left( {2 - a} \right)^2}f''\left( { - 1} \right) = 0$$
B
$${\left( {2 - a} \right)^2}f''\left( 1 \right) - {\left( {2 + a} \right)^2}f''\left( { - 1} \right) = 0$$
C
$$f'\left( 1 \right)f'\left( { - 1} \right) = {\left( {2 - a} \right)^2}$$
D
$$f'\left( 1 \right)f'\left( { - 1} \right) = -{\left( {2 + a} \right)^2}$$
3
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$f$$ and $$g$$ be real valued functions defined on interval $$(-1, 1)$$ such that $$g''(x)$$ is continuous, $$g\left( 0 \right) \ne 0.$$ $$g'\left( 0 \right) = 0$$, $$g''\left( 0 \right) \ne 0$$, and $$f\left( x \right) = g\left( x \right)\sin x$$

STATEMENT - 1: $$\mathop {\lim }\limits_{x \to 0} \,\,\left[ {g\left( x \right)\cot x - g\left( 0 \right)\cos ec\,x} \right] = f''\left( 0 \right)$$ and

STATEMENT - 2: $$f'\left( 0 \right) = g\left( 0 \right)$$

A
Statement - 1 is True, Statement - 2 is True; Statement - 2 is a correct explanation for Statement - 1
B
Statement - 1 is True, Statement - 2 is True; Statement - 2 is NOT a correct explanation for Statement - 1
C
Statement - 1 is True, Statement -2 is False
D
Statement - 1 is False, Statement -2 is True
4
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Consider the functions defined implicitly by the equation $$y^3-3y+x=0$$ on various intervals in the real line. If $$x\in(-\infty,-2)\cup(2,\infty)$$, the equation implicitly defines a unique real valued differentiable function $$y=f(x)$$. If $$x\in(-2,2)$$, the equation implicitly defines a unique real valued differentiable function $$y=g(x)$$ satisfying $$g(0)=0$$

If $$f\left( { - 10\sqrt 2 } \right) = 2\sqrt 2 ,$$ then $$f''\left( { - 10\sqrt 2 } \right) = $$

A
$${{4\sqrt 2 } \over {{7^3}{3^2}}}$$
B
$$-{{4\sqrt 2 } \over {{7^3}{3^2}}}$$
C
$${{4\sqrt 2 } \over {{7^3}3}}$$
D
$$-{{4\sqrt 2 } \over {{7^3}3}}$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12