Let $$g(x) = \log f(x)$$, where $$f(x)$$ is a twice differentiable positive function on (0, $$\infty$$) such that $$f(x + 1) = xf(x)$$. Then for N = 1, 2, 3, ..., $$g''\left( {N + {1 \over 2}} \right) - g''\left( {{1 \over 2}} \right) = $$
$$f\left( x \right) = {{{x^2} - ax + 1} \over {{x^2} + ax + 1}},0 < a < 2.$$
Which of the following is true?
Consider the functions defined implicitly by the equation $$y^3-3y+x=0$$ on various intervals in the real line. If $$x\in(-\infty,-2)\cup(2,\infty)$$, the equation implicitly defines a unique real valued differentiable function $$y=f(x)$$. If $$x\in(-2,2)$$, the equation implicitly defines a unique real valued differentiable function $$y=g(x)$$ satisfying $$g(0)=0$$
If $$f\left( { - 10\sqrt 2 } \right) = 2\sqrt 2 ,$$ then $$f''\left( { - 10\sqrt 2 } \right) = $$
STATEMENT - 1: $$\mathop {\lim }\limits_{x \to 0} \,\,\left[ {g\left( x \right)\cot x - g\left( 0 \right)\cos ec\,x} \right] = f''\left( 0 \right)$$ and
STATEMENT - 2: $$f'\left( 0 \right) = g\left( 0 \right)$$