NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

IIT-JEE 2008

MCQ (Single Correct Answer)
Let $$g\left( x \right) = \log f\left( x \right)$$ where $$f(x)$$ is twice differentible positive function on $$\left( {0,\infty } \right)$$ such that $$f(x+1)=x f(x)$$. Then, for $$N=1, 2, 3, ..........$$
$$g''\left( {N + {1 \over 2}} \right) - g''\left( {{1 \over 2}} \right) = $$
A
$$ - 4\left\{ {1 + {1 \over 9} + {1 \over {25}} + ....... + {1 \over {{{\left( {2N - 1} \right)}^2}}}} \right\}$$
B
$$4\left\{ {1 + {1 \over 9} + {1 \over {25}} + ....... + {1 \over {{{\left( {2N - 1} \right)}^2}}}} \right\}$$
C
$$ - 4\left\{ {1 + {1 \over 9} + {1 \over {25}} + ....... + {1 \over {{{\left( {2N + 1} \right)}^2}}}} \right\}$$
D
$$4\left\{ {1 + {1 \over 9} + {1 \over {25}} + ....... + {1 \over {{{\left( {2N + 1} \right)}^2}}}} \right\}$$
2

IIT-JEE 2007

MCQ (Single Correct Answer)
Let $$\,\,\,$$$$f\left( x \right) = 2 + \cos x$$ for all real $$X$$.

STATEMENT - 1: for eachreal $$t$$, there exists a point $$c$$ in $$\left[ {t,t + \pi } \right]$$ such that $$f'\left( c \right) = 0$$ because
STATEMENT - 2: $$f\left( t \right) = f\left( {t + 2\pi } \right)$$ for each real $$t$$.

A
Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
B
Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
C
Statement-1 is True, Statement-2 is False
D
Statement-1 is False, Statement-2 is True.
3

IIT-JEE 2007

MCQ (Single Correct Answer)
$${{{d^2}x} \over {d{y^2}}}$$ equals
A
$${\left( {{{{d^2}y} \over {d{x^2}}}} \right)^{ - 1}}$$
B
$$ - {\left( {{{{d^2}y} \over {d{x^2}}}} \right)^{ - 1}}{\left( {{{dy} \over {dx}}} \right)^{ - 3}}$$
C
$$\left( {{{{d^2}y} \over {d{x^2}}}} \right){\left( {{{dy} \over {dx}}} \right)^{ - 2}}$$
D
$$ - \left( {{{{d^2}y} \over {d{x^2}}}} \right){\left( {{{dy} \over {dx}}} \right)^{ - 3}}$$
4

IIT-JEE 2005 Screening

MCQ (Single Correct Answer)
If $$f(x)$$ is a twice differentiable function and given that $$f\left( 1 \right) = 1;f\left( 2 \right) = 4,f\left( 3 \right) = 9$$, then
A
$$f''\left( x \right) = 2$$ for $$\forall x \in \left( {1,3} \right)$$
B
$$f''\left( x \right) = f'\left( x \right) = 5$$ for some $$x \in \left( {2,3} \right)$$
C
$$f''\left( x \right) = 3$$ for $$\forall x \in \left( {2,3} \right)$$
D
$$f''\left( x \right) = 2$$ for some $$x \in \left( {1,3} \right)$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12